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Preface

Modern information systems rely increasingly on combining concurrent, dis-
tributed, mobile, reconfigurable and heterogenous components. New models,
architectures, languages, and verification techniques are therefore necessary to
cope with the complexity induced by the demands of today’s software develop-
ment. Coordination languages have emerged as a successful approach, providing
abstractions that cleanly separate behavior from communication and therefore
increasing modularity, simplifying reasoning, and ultimately enhancing software
development.

This volume contains the proceedings of the 7th International Conference
on Coordination Models and Languages (Coordination 2005), held at the Insti-
tute of Informatics of the University of Namur, Belgium, on April 20-23, 2005.
The previous conferences in this series took place in Cesena (Italy), Berlin (Ger-
many), Amsterdam (The Netherlands), Limassol (Cyprus), York (UK), and Pisa
(Italy). Building upon the success of these events, Coordination 2005 provided
a forum for the community of researchers interested in models, languages, and
implementation techniques for coordination and component-based software, as
well as applications that exploit them.

The conference attracted 88 submissions from authors all over the world.
The Program Committee, consisting of 20 of the most distinguished researchers
in the coordination research area, selected 19 papers for presentation on the
basis of originality, quality, and relevance to the topics of the conference. Each
submission was refereed by three reviewers — four in the case of papers written
by a member of the Program Committee. As with previous editions, the paper
submission and selection processes were managed entirely electronically. This was
accomplished using ConfMan (www.ifi.uni.no/confman/ABOUT-ConfMan/), a
free Web-based conference management system, and with the invaluable help
of Paolo Costa, who installed and customized the system, ensuring its smooth
operation.

We are grateful to all the Program Committee members who devoted much
effort and time to read and discuss the papers. Moreover, we gratefully ac-
knowledge the help of additional external reviewers, listed later, who reviewed
submissions in their areas of expertise.

Finally, we would like to thank the authors of all the submitted papers and the
conference attendees, for keeping this research community lively and interactive,
and ultimately ensuring the success of this conference series.

February 2005 Jean-Marie Jacquet
Gian Pietro Picco
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A Case Study of Web Services Orchestration

Manuel Mazzara! and Sergio Govoni?

! Department of Computer Science, University of Bologna, Italy
mazzara@cs.unibo.it
2 Imaging Science and Information Systems Center, Georgetown University,
Washington, DC, USA

govoni@isis.imac.georgetown.edu

Abstract. Recently the term Web Services Orchestration has been in-
troduced to address composition and coordination of Web Services. Sev-
eral languages to describe orchestration for business processes have been
presented and many of them use concepts such as long-running trans-
actions and compensations to cope with error handling. WS-BPEL is
currently the best suited in this field. However, its complexity hinders
rigorous treatment. In this paper we address the notion of orchestration
from a formal point of view, with particular attention to transactions
and compensations. In particular, we discuss webms, an untimed sub-
calculus of webr [15] which is a simple and conservative extension of
the m-calculus. We introduce it as a theoretical and foundational model
for Web Services coordination. We simplify some semantical and prag-
matical aspects, in particular regarding temporization, gaining a better
understanding of the fundamental issues. To discuss the usefulness of the
language we consider a case study: we formalize an e-commerce transac-
tional scenario drawing on a case presented in our previous work [12].

1 Introduction

The aim of Web Services is to ease and to automate business process collabora-
tions across enterprise boundaries. The core Web Services standards, WSDL [11]
and UDDI [26], cover calling services over the Internet and finding them, but
they are not enough. Creating collaborative processes requires an additional
layer on top of the Web Services protocol stack: this way we can achieve Web
Services composition and orchestration. In particular, orchestration is the de-
scription of interactions and messages flow between services in the context of a
business process [23]. Orchestration is not a new concept; in the past it has been
called workflow [28].

1.1 The State of the Art in Orchestration

Three specifications have been introduced to cover orchestration: Web Services
Business Process Execution Language (WS-BPEL or BPEL for short) [1] which
is the successor of Microsoft XLANG [25,5] and IBM WSFL [16], together

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 1-16, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 M. Mazzara and S. Govoni

with WS-Coordination (WS-C) [29] and WS-Transaction (WS-T) [30]. BPEL
is a workflow-like definition language that allows to describe sophisticated busi-
ness processes; WS-Coordination and WS-Transaction complement it to pro-
vide mechanisms for defining specific standard protocols to be used by trans-
action processing systems, workflow systems, or other applications that wish
to coordinate multiple services. Together, these specifications address connec-
tivity issues that arise when Web Services run on several platforms across
organizations.

1.2 Transactions in Web Services

A common business scenario involves multiple parties and different organizations
over a time frame. Negotiations, commitments, shipments and errors happen. A
business transaction between a manufacturer and its suppliers ends successfully
only when parts are delivered to their final destination, and this could be days
or weeks after the initial placement of the order.

A transaction completes successfully (commits) or it fails (aborts) undoing
(roll-backing) all its past actions. Web services transactions [17] are long-running
transactions. As such, they pose several problems. It is not feasible to turn an
entire long-running transaction into an ACID transaction, since maintaining
isolation for a long time poses performance issues [31]. Roll-backing is also an
issue. Undoing many actions after a long time from the start of a transaction
entails trashing what could be a vast amount of work.

Since in our scenario a traditional roll-back is not feasible, Web Services
orchestration environments provide a compensation mechanism which can be
executed when the effects of a transaction must be cancelled. What a compen-
sation policy does depends on the application. For example, a customer orders
a book from an on-line retailer. The following day, that customer gets a copy of
the book elsewhere, then requests the store to withdraw the order. As a com-
pensation, the store can cancel the order, or charge a fee. In any case, in the end
the application has reached a state that it considers equivalent to what it was
before the transaction started.

The notions of orchestration and compensation require a formal definition.
In this paper, we address orchestration with particular attention to web transac-
tions. We introduce webm,, a subcalculus of webw [15] that does not model time,
as a simple extension of the m-calculus. As a case study, we discuss and formal-
ize an e-commerce transactional scenario building on a previous one, which we
presented in an earlier work [12] using a different algebra, the Event Calculus,
which we introduced in [18]. The Event Calculus needed some improvement to
make it more readable and easier to use for modelling real-world scenarios. This
paper is a step in that direction.

1.3 Related Work

In this paper we mainly refer to BPEL, the most likely candidate to become a
standard among workflow-based composition languages. Other languages have
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been introduced, among them WS-CDL [14], which claims to be in some relation
with the fusion calculus [22].

Other papers discuss formal semantics of compensable activities in this con-
text. [13] is mainly inspired by XLANG; the calculus in [9] is inspired by BP-
Beans [10]; the wt-calculus [8] focuses on BizTalk; [6] deals with short-lived
transactions in BizTalk; [7] also presents the formal semantics for a hierarchy of
transactional calculi with increasing expressiveness.

Some authors believe that time should be introduced both at the model level
and at the protocols and implementation levels [15, 3, 2, 4]. XLANG, for instance,
provides a notion of timed transaction as a special case of long running activity.
BPEL uses timers to achieve a similar behavior. This is a very appropriate
feature when programming business services which cannot wait forever for the
other parties reply.

1.4 Outline

This work is organized as follows. In Section 2 we explain our formal approach
to orchestration: extending the m-calculus to include transactions. In Section
3 we discuss this extension with its syntax and semantics, while in Section 4
we discuss an e-commerce transactional scenario to show the strength of the
language. Section 5 draws a conclusion.

2 A Formal Approach to Web Services Orchestration

Business process orchestration has to meet several requirements, including pro-
viding a way to manage exceptions and transactional integrity [23]. Orchestration
languages for Web Services should have the following interesting operations: se-
quence, parallel, conditional, send to/receive from other Web Services on typed
WSDL ports, invocation of Web Services, error handling.

BPEL covers all these aspects. Its current specification, however, is rather
involved. A major issue is error handling. BPEL provides three different mecha-
nisms for coping with abnormal situations: fault handling, compensation handling
and event handling. ' Documentation shows ambiguities, in particular when in-
teractions between these mechanisms are required. Therefore it is difficult to use
the language, and we want to address this issue.

Our goal is to define a clear model with the smallest set of operators which
implement the operations discussed above, and simple to use for application de-
signers. We build on the w-calculus [21, 20, 24], a well known process algebra. It
is simple and appropriate for orchestration purposes. It includes: a parallel oper-
ator allowing explicit concurrency; a restriction operator allowing composition-
ality and explicit resource creation; a recursion or a process definition operator
allowing Turing completeness; a sequence operator allowing causal relationship

! The BPEL event handling mechanism was not designed for error handling only.
However, here we use it for this purpose.
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between activities; an inaction operator which is just a ground term for induc-
tive definition on sequencing; message passing and in particular name passing
operators allowing communication and link mobility.

There is an open debate on the use of w-calculus versus Petri nets in the
context of Web Services composition [27]. The main reason here for using the
m-calculus for formalization is that the so called Web Services composition lan-
guages, like XLANG, BPEL and WS-CDL claim to be based on it, and they
should therefore allow rigorous mathematical treatment. However, no interest-
ing relation with process algebras has really been proved for any of them, nor an
effective tool for analysis and reasoning, either theoretical or software based, has
been released. Therefore, we see a gap that needs to be filled, and we want to
address the problem of composing services starting directly from the 7-calculus.

By itself the m-calculus does not support any transactional mechanism. Pro-
gramming complex business processes with failure handling in term of message
passing only is not reasonable; also, the Web Services environment requires that
several operations have transactional properties and be treated as a single logi-
cal unit of work when performed within a single business transaction. Below we
consider a simple extension of the 7-calculus that covers transactions.

3 The Orchestration Calculus webm,

The syntax of webm,, processes relies on countable sets of names, ranged over

by x,y, z,u, - - -. Tuples of names are written w.
P =
0 (nil)
| T (w) (output)
| z(u).P (input)
| ()P (restriction)
| P| P (parallel composition)
| A(@) (process invocation)
| {P; P), (transaction)

We are assuming a set of process constants, ranged over by A, in order to
support process definition. A defining equation for a process identifier A is of
the form

A p

where each occurrence of A in P has to be guarded, i.e. it is underneath an input
prefix. It holds fn(P) C {4} and @ is composed by pairwise distinct names.

A process can be the inert process 0, an output T (u) sent on a name x that
carries a tuple of names @, an input xz(u ) P that consumes a message T (@) and
behaves like P{®W/3}, a restriction (x)P that behaves as P except that inputs
and messages on = are prohibited, a parallel composition of processes, a process
invocation A(u) or a transaction (P ; R), that behaves as the body P until a
transaction abort message T () is received, then it behaves as the compensation Q.
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Names x in outputs and inputs are called subjects of outputs and inputs
respectively. It is worth noticing that the syntax of webm,, processes simply
extends the asynchronous 7-calculus with the transaction process.

The input z(u).P and restriction (x)P are binders of names u and x re-
spectively. The scope of these binders is the processes P. We use the standard
notions of a-equivalence, free and bound names of processes, noted fn(P), bn(P)
respectively. In particular

fn((P; R),) = fn(P) U fn(R) U {z} and a-equivalence equates (z)((P ; Q),)
with (2)((P{#/z}; Q{*/}).);

In the following we let 7.P be the process (2)(Z()|z().P) where z ¢ fn(P).
webm,, processes considered in this paper are always well-formed according to
the following:

Definition 1 (Well-formedness). Received names cannot be used as subjects
of inputs. Formally, in x(uw).P free subjects of inputs in P do not belong to
names u.

This property avoids a situation where different services receive information on
the same channel, which is a nonsense in the service oriented paradigm.

3.1 Semantics of the Language

We give the semantics for the language in two steps, following the approach of
Milner [19], separating the laws which govern the static relations between pro-
cesses from the laws which rule their interactions. The first step is defining a
static structural congruence relation over syntactic processes. A structural con-
gruence relation for processes equates all agents we do not want to distinguish.
It is introduced as a small collection of axioms that allow minor manipulation
on the processes’ structure. This relation is intended to express some intrinsic
meanings of the operators, for example the fact that parallel is commutative. The
second step is defining the way in which processes evolve dynamically by means
of an operational semantics. This way we simplify the statement of the seman-
tics just closing with respect to =, i.e. closing under process order manipulation
induced by structural congruence.

Definition 2. The structural congruence = is the least congruence closed with
respect to a-renaming, satisfying the abelian monoid laws for parallel (associa-
tivity, commutativity and 0 as identity), and the following azioms:

1. The scope laws:

0, (u@)P=(v)(uPh,
= W)(P|Q), ifugin(P)
(P Q) ifz¢{z}Un(Q)

(u)0
Pl (u)
((2)P; Q)

<y
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2. The invocation law:
A(®) = P{o/at  if A < P
3. The transaction laws:

(0;Q),=0
P; Q) |R; R, =(P; Q) |{R; R,

4. The floating law:
(z@|P; Q) =z@w[(P; Q),

The scope and invocation laws are standard. Let us discuss transaction and
floating laws, which are unusual. The law (0 ; @), = 0 defines committed
transactions, namely transactions with 0 as body. These transactions, being
committed, are equivalent to 0 and, therefore, cannot fail anymore. The law
{r; Q) IR; R'), =(P; Q),|{R; R'), moves transactions outside parent
transactions, thus flattening the nesting of transactions. Notwithstanding this
flattening, parent transactions may still affect children transactions by means of
transaction names. The law (Z(u) | P ; R), = z(u) | (P ; R), floats messages
outside transactions; it models that messages are particles that independently
move towards their inputs. The intended semantics is the following: if a process
emits a message, this message traverses the surrounding transaction boundaries,
until it reaches the corresponding input. In case an outer transaction fails, recov-
ery actions for this message may be detailed inside the compensation processes.
The dynamic behavior of processes is defined by the reduction relation.

Definition 3. The reduction relation — is the least relation satisfying the fol-
lowing axioms and closed with respect to =, (x)-, - |- and { _; Q)

(com)
z(v) |z(u).P — P{v/g3}
(FAIL)

T ([Lieswi(w).Pi; @), — @ (I#0)

Rule (com) is standard in process calculi and models input-output interaction.
Rule (fail) models transaction failures: when a transaction abort (a message on
a transaction name) is emitted, the corresponding transaction is terminated by
garbage collecting the threads (the input processes) in its body and activating
the compensation. On the contrary, aborts are not possible if the transaction is
already terminated, namely every thread in the body has completed its job.

4 A Case Study

In this section, we discuss an implementation in webm,, of a classical e-business
scenario: a customer attempts to buy a set of items from some providers, using a
coordination service exposed by a web portal. Actors involved in this e-business
scenario are a customer, a web portal and a set of item providers.
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4.1 Participants

The roles who take part in the purchase scenario are the following:

1. a customer sends a request to a shopping portal, and waits for a response.
The customer can express some constraints: for example, “I want to buy
either all items or no one at all”. The web portal takes care of implementing
policies like this one;

2. a web portal tries to fulfill customers’ requests and their constraints about
the purchase policy. It acts as a coordinator;

3. an item provider accepts two kinds of requests from the web portal: a
simple browsing of the price-list (read-only), and a purchase request of an
item.

The web portal, on behalf of a customer, tries to buy an item from a provider.
This could be a failure or success. In case of failure, the web portal is informed,
and the item provider forgets everything about the transaction. In case of suc-
cess, if the request can be fulfilled, the item provider declares that the sale is
complete, and it begins the execution of an internal process which simulates the
delivery of the item. Meanwhile, the customer can change her mind and tell the
item provider, which will compensate the relative transaction, i.e. take some ac-
tions to establish a safe state. An example of compensation may be charging a
fee. This mechanism will be explained more in detail below within the webm.,
specification.

4.2 Constraints

When sending a purchase request, a customer can also specify the behavior that
the complete transaction must follow. For example, a customer wants to buy
formal attire: a suit, a pair of shoes, a shirt and a tie. A reasonable constraint
to impose is that either the shirt and the tie should come together, or none
of them, while the suit and the shoes are optional. In our specification, we
describe a simplified policy called all or nothing. This means that the purchase
transaction will be successful only if all sub-transactions will commit, otherwise
the purchase will fail. To implement this constraint, the web portal uses the
compensation service that the item providers provide.

Buy requests are emitted simultaneously to each item provider, and the web
portal gets their outcomes. If each sub-transaction is successful, the web portal
informs the customer that its request has been satisfied, otherwise, it compen-
sates any committed sub-transaction.

In our implementation we simplify this scenario. Instead of asking the cus-
tomer for constraints over an order, we apply a built-in policy. This is fair to
pose, because constraints are contained in the coordinator process, and this does
not affect the behavior of item providers. It is also very easy to specify different
purchase policies, because they are clearly separated from the mechanisms which
control them. Further, we also assume that a customer wants to buy two items
only from two different sellers.
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4.3 Formal Description

We now present a formal description of all participants and how they can be
composed in an e-business scenario.

World
WORLD() := (ac)(ap)(c1)(p1)(c2)(p2)

(CUSTOMER (ac, ap)

| WEB_PORTAL (ac, ap, ¢1,p1,C2,p2)

[IP1(c1,p1)

|1P2(c2, p2))
The process WORLD() composes the various participants to the scenario; first of
all, it creates some global channels, used by the processes to interact together:
the channels a. and a, are the web portal interfaces exposed to the customers.
So, they are passed as arguments both to the CUSTOMER(ac, a,) and to the
WEB_PORTAL(ac, ap, ¢1,p1,c2, p2) processes. The first one is used to require a
price list, while the second one to emit a purchase order.

The other global channels are the set of pairs ¢; and p;, which are respectively
the query and the purchase interface of the i* item provider. Those names
are passed as arguments to the WEB_PORTAL(ac, ap, ¢1,p1, ¢2, p2) and IPi(c;, p;)
processes.

We do not model message loss, because we suppose that reliable protocols are
used, which would take care of any transmission error, and we ignore the issue
of site crashes. We also assume the world as a closed system, in the sense that
fn(()WORLD()) = (). Because of the dynamic nature of the scenario, this could
be regarded as a rather strong assumption. All these aspects could be taken into
account in a future evolution of the specification.

Customer

CUSTOMER(ac, ap) := (q1)(q2)(ar)(as)(ay)
(TC <(717 'qu a7‘> |G‘T(llﬂ 12)0‘71? <§17 (725 Qs, af> |

as()-5() [as ()-F()

The customer process first browses a price list. When it receives an answer, it
emits a purchase request, and waits for the outcome. To do this it creates these
names: ¢; and g, which contain the two item preferences, the channel a,., which is
the restricted reply channel used by the Web Portal to inform the customer about
the price list consultation, and the two channels as (success) and ay (failure),
which signal respectively the outcome of the purchase transaction. Then the
customer process sends the message @. (q1, g2, a,) to the web portal consultation
interface. This message carries the items description and the reply channel. This
first phase ends with the receipt of the reply message aT(ll7 l3), which carries
two names, l1 and lg, encoding the features of the requested items, like their
availability, the selling price and many others. Basing on this mformatlon, the
customer process elaborates its orders — which are encoded in ¢; and ¢ — and
sends a purchase order @, (q1, g2, as, ay) containing the item specifications and
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the outcome channels, a;, and af. When the customer process receives one of
this message, the purchase transaction has completed and it goes on with the
appropriate task identified by S() or F(). Moreover, it is guaranteed that either
all the items have been bought, or the appropriate compensations have been
emitted.

Web Portal

WEB_PORTAL(ac, ap, c1, p1, c2, p2) := ac(q1, @2, ar).
(ENGINE(ap,c1,p1702,p2,§1,q~2,a,~)|
WEB_PORTAL(ac, ap, c1,p1, c2,p2))

ENGlNE(aP7017p17CQ7p27 (717(1~2»ar) = QUERY(ChC%aha%aT) |
PURCHASE(ay, p1,p2)

QUERY (c1, 2, q1, G2, ar) = (r1)(r2)(ex (qu,m1) |2 (G2, 72) |
(@1, 1) r2(Ge, )@ (11, 12))
PURCHASE(ay, p1,p2) = ap(q1, 2, as,ay5).(r ;)(rf)( ?)(r?)

(D1 (qu, e, 7p) | P2 (G, 72, 7F) |
WAIT(r;,r}-,r?,r?7a57af))

The web portal process exposes a service which can be used by a customer
to query some distributed price lists, and subsequently to purchase the items.
When it receives a request a.(qi,q2,a,), it executes a managing process —
ENGINE(ap, ¢1,p1,¢2,p2, 1, G2, ar) — and it creates a duplicate, to wait for fur-
ther requests.

The ENGINE(ayp, ¢1,p1,¢2,P2,G1, G2, ar) process executes two sub-processes
QUERY (c1, ¢2, G1, G2, ar) and PURCHASE(ay,, p1, p2). The first of these subtasks,
QUERY (¢y, ¢2, q1, @2, ar ), receives the consulting channels ¢; and ¢g, the customer
preferences ¢; and ¢o and the reply channel a.,.. It emits in parallel the various
price list consultations with the messages ¢1 (g1, 71) and €3 (ga, 72), which contain
the customer preferences and the private channels 1 and ro on which it will wait
for a reply. Those replies contain the outcomes of the queries executed on the
item provider’s databases — encoded with names 11 and l>. When the web portal
receives them, it forwards them to the customer application with the message
@, (l1,12), and it waits for a purchase order on the channel a,(q1, g2, as, ay).

The process PURCHASE(a,, p1,p2) is called with the channel a,, on which
it will wait for the customer’s order, and the item providers’ channels p; and
po. First, it receives the customer’s request a, (g1, g2, as, ay), which contains the
item specifications and the pair of success/failure channels. At this point, it cre-
ates a pair of success/failure reply channels 7, and r; for each item provider,
and emits the purchase requests py (¢, rs,rf> and pg <q2,r5,rf> When the re-
quests have been emitted, the process PURCHASE(a,, p1,p2) executes the pro-
cess WA'T(T;,T}-,T‘?,T‘%,as,af), which will manage the purchase transactions’
outcomes.

Waiting Process. The process WAIT(ri,r},r?,r?,as,af) waits for the out-
come of the item provider 1 in this way:
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WA|T(T;7TJ1:,T§,TJQ:,QS,(LJI) = T;(al7flvl,t1).WAlTS7*(t1,T?,T?,as,af)
|r}(&l,l:).WAITFV*(rf,rfc,as,af)

WAITS,*(tl,rg,rfc,as,af) = Tf(&g;l;,t2).POL|CYs7S(t1,t2,as,af)
| 72(a, l2).POLICYs ¢ (t1, as, ay)

WAITE . (12,72, as,ap) = 12(G2, l2, t2).POLICYE s (t2, as, ay)
|72 (2, [2).POLICYE ¢ (as, ay)

If the item provider 1 is able to fulfill the order, it emits a message on the input
channel rl(qi,l1,t1). When the web portal receives this message, the process
WAITs , (t1, 72, 7"]%, as,ay) can start. This process manages all the cases in which
the item provider 1 is successful. On the other hand, if the item provider 1
is not able to fulfill the order, the web portal receives a failure message on the
input channel r} (q1,11), and the process WAITE , (2, rj%, as,ay) is executed. This
process manages all the cases in which the item provider 1 fails.

The behavior of WAITs , (t1, 72, TJ%, as,ayr) and WAITE . (r2, r?, as,ay) is quite
clear: each one waits for the outcome of the item provider 2. When the web
portal receives the message, it will be alternatively in one of four possible states,
as shown in figure 1.

Policy Process. When all outcome messages have been collected, the web por-
tal is able to take the appropriate actions: this is done by the following processes:

POLICYs s(t1,t2,as,ar) := a5 ()
POLICYS,F(tl,aS,af) = W() |E<>
POLICYEs(t2,as,ay) =as () |t2()
POLICYF,F(aS,af) e 7()

The first process manages the case in which both of the item providers are
successful; in this case, the customer is informed that its purchase order can

1: Success 1: Success 1: Failure 1: Failure
2: Success 2: Failure 2: Success 2: Failure

Fig.1. Tree of Possible Executions
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be fulfilled. This process receives the compensation handlers ¢; and ¢ also if it
does not use them. This is because, in general, the web portal could implement
a policy different from all or nothing.

The process POLICYs g(t1, as, ay) manages the case where the item provider
1 is successful, and the item provider 2 is faulty: to fulfill the constraints imposed
by the customer, the transaction is cancelled with the emission of the compen-
sation request t (). This way, the web portal implements the all or nothing
behavior required by the customer. The case where the item provider 1 is faulty
while the item provider 2 is successful is simply the dual case. The case where
both the item providers are faulty is managed simply by emitting a message on
the reply channel af, and no compensation is required.

It would be easy to generalize the algorithm to an at least one policy. In such a
scenario, the web portal would send a success message in all the first three cases,
while in the fourth one, it would send a failure message. No compensations would
be required.

Item Provider
IPi(ci,pi) := (dbe)(dby)(CPi(ci, dbe) | PPi(pi, dby) | DBP;i(dbe, dby))

The generic i*" item provider receives two names as arguments, ¢; and p;. These
names are global, i.e. they have been created by the WORLD() process. The
former represent the item provider interface for the consulting service, while the
latter is used to receive a buying order. When the item provider process begins
its execution, it creates a pair of channels, which are used to interact with a
database process. The channel db. is used to invoke a price list consultation
service exposed by the database; the channel db,, is used to emit a purchase order
to the same database. After the creation of these channels, the item provider
creates three sub-processes, CPi(c;,db.), PPi(p;,db,) and DBP;(db.,db,). The
first two processes manage the consultation and the purchase orders emitted by
the customer, while the third one represents a database process.

Consulting Process

CPi(cs, dbe) = ¢i(Gi, r:)-((odbe) (dbe (G, odbe) | odbe(Gi, 1) F7 (G, 1s))
| CP](C»;, dbc))

CPi(ci, db,) is a server process which receives price list read requests. It receives
two names, ¢; and db.. The first name is the input channel it will listen to
for a request, while the second one is the access point for the database querying
service. The process CP;(c;, db.) behaves as follows: when it receives a price check
request ¢;(q;, ), containing the customer preferences ¢; and a reply channel r;,
it duplicates itself and begins the price list reading operations. It creates a fresh
name, odbc, and sends it to the database consulting service with the message
db.. (G;, odbc), which contains also the customer preferences g;. Then it waits
for an outcome (odbc(@,z)) and forwards it to the web portal, using the reply
channel 7; <q~1,l~l>
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Purchase Process

PPi(pi, dbp) = pi(qi, 7s,7s).((odbes ) (odbey) (s)(£) (t:)(dby (i, odbes, odbey, 5)
| {odbes (@i, 1, 6)-(F () |75 (@i, lis ta) [£:0-0) 5 0),
| {odbe; (@i, 12)-(5 () | 77 (@i, 1)) 5 0 ) | PPi(pi, dby))

The second sub-process created by the item provider PP;(p;, db,) manages the
purchase orders emitted by the web portal on behalf of the customer. When this
process runs, it receives two names, p; and db,. The first name is the access point
for the purchase service exposed by the item provider. The second name repre-
sents a private channel shared between the purchase manager and the database
process that is used to invoke the purchase service exposed by the database.

The process PP;(p;, db,) waits for a purchase request on the global channel p;.
The request contains the customer’s preferences g; and a pair of success/failure
reply channels, s and r¢. When the process receives this message, it makes a
copy of itself and waits for further requests, and begins the purchase managing
operations. First it creates two fresh names, odbc, and odbcy, which are a pair of
success/failure reply channels. Then it creates two transactions, s and f, which
manage the cases of success and failure of the purchase process. Those names
are restricted, together with the name ¢;, which will be used by the web portal
to compensate a successful purchase transaction. The purchase process emits a
request message T% (i, odbcs, odbey, s), which contains the customer preferences
i, a pair of success/failure reply channels odbcs and odbcy and the name of
successful transaction manager, s. Its usefulness is shown below.

After the emission of the purchase request, the process activates the success
and the failure transactions. Those transactions share a very similar behavior.
Each one listens to the appropriate channel for the database outcome. This
means that the transaction s waits for a success message on the odbcs channel,
while the transaction f waits on the odbcy channel. In both cases, the outcome

message brings the customer preferences ¢; and the query result l~l Moreover, in
case of success, the message contains also the name of the database transaction
which manages the delivery of the requested item. This name can be used to
compensate this activity, as we show below.

When one of the two specular transaction receives the purchase outcome, it
triggers the other one. As the two compensation processes are the 0 process,
this mechanism acts like an explicit garbage collector.? After receiving of the
outcome, the appropriate transaction forwards it to the web portal. In case of a
success, moreover, the reply message contains also a transaction name that can
be used to activate the database delivery compensation. Instead of the original
name received by the database process, t, a placeholder, t;, is sent. This forbids
a direct access to an internal process — the database — by an external process.
In case of success, indeed, the item provider acts as a wrapper for the database

2 This feature is not really necessary, because the other transaction remains deadlocked
on a restricted name, but is useful to show how it is possible to implement a garbage
collector with the compensation mechanism provided by the transactions.
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compensation mechanism. When the item provider receives a compensation re-
quest, it emits the correct signal. The execution of this wrapper process lasts
until the delivery operations end. When this happens the clearing signal s is
emitted by the database process.

Database Process

DBP;(db,, db,) := DBP{(db,) | DBP(db,)
DBPS(db.)  := db.(Gi, odbc).((1;)(odbe (Gi, 1)) | DBPS (db,))
DBP?(dby) := dbp (s, odbes, odbey, s).(
(1s)(t) (odbes (i, Uiy t) | ({dlv() 5 emp()),-3 ()
®odbey (i, i) |
DBP?(db,,))

The third sub-process created by the item provider is DBP;(db,, db,). This pro-
cess simulates the behavior of a DBMS. In particular, it exposes two kinds of
services: the price list consultation and the purchase order. It receives a pair
of private channels db. and db, and shares them with the item provider. The
former is the access point on which it will wait for a price list consultation, while
the latter is used to listen for purchase orders.

Two distinct sub-processes manage the two activities mentioned above. The
process DBP;(db.) manages the price list consultation. When it receives a re-
quest message, it creates a duplicate. The request message carries the customer’s
preferences ¢; and a reply channel odbc. Now, the database simply creates a new
name, [;, which represents the outcome of the query executed on the DBMS,
and sends it back to the item provider. This operation simulates a database
query, and can never fail; if a query produces no results, its outcome is correctly
encoded on the fresh name ;.

The process DBPP(db,) deals with purchase orders, delivery of goods and
any compensation requested by the web portal. At first, the process receives a
purchase order from the item provider. This request contains the item preferences
Gi, a pair of success/failure reply channels odbcs and odbcy and a transaction
name s. When it receives the request, the process makes a copy of itself, creates
a new name [;, which represents the query outcome, and decides if the customer’s
request can be fulfilled or it must be rejected. To do so, it uses a constructor
called internal choice, which is represented with the symbol @. This means that
only one process is chosen, while the other is simply discharged. This behavior is
easily encodable in terms of parallel composition, message passing and restriction
only. We introduce this notation just for brevity.

If the database purchase process is not able to fulfill the order, it simply emits
a message odbcy (i, ;) on the failure reply channel odbey, and forgets everything
about the transaction. The message contains the customer’s preferences ¢; and
the outcome of the query, represented by [;. In case of item availability, the
behavior of the database process is more complex. On the successful channel
odbc,, it emits a reply message, which contains the customer preferences g;,
the outcome of the query [; and the compensation handler ¢. In parallel with
the reply message emission, the database process begins to execute the delivery




14 M. Mazzara and S. Govoni

operations. From this moment on, the web portal can emit the compensation
request while the delivery action is being performed.

5 Conclusion

In this paper we introduced webm,,, a simple extension of the mw-calculus with
untimed long running transactions. We discussed the notion of orchestration
without considering time constraints. This way we focused on information flow,
message passing, concurrency and resource mobility, keeping the model small and
simple. We motivated the underlying theory we rely on, the w-calculus, in terms
of expressiveness and suitability to composition and orchestration purposes. To
show the strength of the language we also proposed a formalization of an e-
commerce transactional scenario.

This work contributes a simple, concise yet powerful and expressive language,
with a solid semantics that allows formal reasoning. The language shows a clear
relation with the m-calculus, and the actual encoding of it with the w-calculus
is a feasible task, while it would be quite harder to to get such an encoding for
XLANG and other Web Services composition languages.

A possible extension of this work could be generalizing the transaction pol-
icy and proving constraints satisfaction. Other future developments building on
the results achieved in this paper include software tools for static analysis of
programs using composition and orchestration. A useful result that could stem
from this work could be streamlined definitions of syntax and semantics of web
services composition languages, to get a simpler way to model involved trans-
action behaviors. On a more theoretical side, another research direction could
be extending the calculus with a notion of time while keeping it simple. The
overall goal we have is to allow for improvement of quality and applicability of
real orchestration languages.
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Enrico Tosi and Andrea Carpineti for their comments and contributions to the

paper.

References

1. T. Andrews, F. Curbera et al. Web Service Business Process Execution Language,
Working Draft, Version 2.0, 1 December 2004.

2. M. Berger. Basic Theory of Reduction Congruence for Two Timed Asynchronous
m-calculi. In CONCUR’04: Proceedings of the 15th International Conference on
Concurrency Theory, LNCS 3170, pages 115-130, Springer-Verlag, 2004.

3. M. Berger. Towards Abstractions for Distributed Systems. PhD Thesis, Imperial
College, London, 2002.

4. M. Berger, K. Honda, The Two-Phase Commit Protocol in an Extended -
Calculus. In EXPRESS ’00: Proceedings of the 7Tth International Workshop on
Ezpressiveness in Concurrency, ENTCS 39.1, Elsevier, 2000.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A Case Study of Web Services Orchestration 15

Microsoft BizTalk Server. [http://www.microsoft.com/biztalk/default.asp], Mi-
crosoft Corporation.

R. Bruni, C. Laneve, U. Montanari. Orchestrating Transactions in Join Calculus.
In CONCUR’02: Proceedings of the 13th International Conference on Concurrency
Theory, LNCS 2421, pages 321-337, Springer-Verlag, 2003.

R. Bruni, H. Melgratti, U. Montanari. Theoretical Foundations for Compensations
in Flow Composition Languages. To appear in POPL2005.

L. Bocchi, C. Laneve, G. Zavattaro. A Calculus for Long-running Transactions.
In FMOODS’08: Proceedings of th 6th IFIP International Conference on Formal
Methods for Open-Object Based Distributed Systems, LNCS 2884, pages 124-138,
Springer-Verlag, 2003.

M. Butler, C. Ferreira. An Operational Semantics for StAC, a Language for Mod-
elling Long-running Business Transactions. In COORDINATION’0/: Proceedings
of the 6th International Conference on Coordination Models and Languages, LNCS
2949, pages 87-104. Springer-Verlag, 2004.

M. Chessel, D. Vines, C. Griffin, V. Green, K. Warr. Business Process Beans: Sys-
tem Design and Architecture Document. Technical report.IBM UK Laboratories.
January 2001.

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Descrip-
tion Language (WSDL 1.1). [www.w3.org/TR/wdsl], W3C, Note 15, 2001.

C. Guidi, R. Lucchi, M.Mazzara. A Formal Framework for Web Services Coordina-
tion. 3rd International Workshop on Foundations of Coordination Languages and
Software Architectures, London 2004.

T. Hoare. Long-Running Transactions. Powerpoint presentation [re-
search.microsoft.com/]

N. Kavantzas, G. Olsson, J. Mischkinsky, M. Chapman. Web Services
Choreography Description Languages. [otn.oracle.com/tech/webservices/ ht-
docs/spec/cdl_v1.0.pdf]

C. Laneve, G. Zavattaro. Foundations of Web Transactions. To appear in FOS-
SACS 2005.

F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf], Member IBM
Academy of Technology, IBM Software Group, 2001.

M. Little. Web Services Transactions: Past, Present and Future.
[www.idealliance.org/papers/dx_xml03/ html/abstract/05-02-02.html]
M.Mazzara, R.Lucchi. A Framework for Generic Error Handling in Business Pro-
cesses. First International Workshop on Web Services and Formal Methods (WS-
FM), Pisa 2004.

R. Milner. Function as Processes. Mathematical Structures in Computer Science,
2(2):119-141, 1992.

R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, 1999.

R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. Journal of
Information and Computation, 100:1-77. Academic Press, 1992.

J. Parrow, B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In LICS’98: Proceedings of the 13th Symposium on Logic in Computer
Science, IEEE Computer Society Press.

C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, October
2003 (Vol.36, No 10), pages 46-52.

D. Sangiorgi, D. Walker. The w-calculus: a Theory of Mobile Processes, Cambridge
University Press, 2001.



16

25

26.

27.

28.

29.

30.

31.

M. Mazzara and S. Govoni

. S. Thatte. XLANG: Web Services for Business Process Design. [http://
www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm|, Microsoft Corpora-
tion, 2001.

Universal Description, Discovery and Integration for Web Services (UDDI) V3
Specification. [http://uddi.org/pubs/uddiv3.htm]

W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat “hum-
ble pie” rather than further inflate the “Pi hype”. [mitwww.tm.tue.nl/staff/
wvdaalst /publications/pi-hype.pdf]

Workflow Management Coalition - http://www.wfmc.org/

WS-Coordination Specification [www-106.ibm.com/developerworks/library/ws-
coor/]

WS-Transaction Specification [www-106.ibm.com/developerworks/webservices/
library /ws-transpec/|

B. Weikum, G. Vossen. Transactional Information Systems. Morgan Kaufmann,
2002.



A Correct Abstract Machine for Safe Ambients*

Daniel Hirschkoff', Damien Pous!, and Davide Sangiorgi?

! ENS Lyon, France
2 Universita di Bologna, Italy

Abstract. We describe an abstract machine, called GCPAN, for the dis-
tributed execution of Safe Ambients (SA), a variant of the Ambient Cal-
culus (AC).

Our machine improves over previous proposals for executing AC, or
variants of it, mainly through a better management of special agents
(forwarders), created upon code migration to transmit messages to the
target location of the migration.

We establish the correctness of our machine by proving a weak bisimi-
larity result with a previous abstract machine for SA, and then appealing
to the correctness of the latter machine.

More broadly, this study is a contribution towards understanding
issues of correctness and optimisations in implementations of distributed
languages encompassing mobility.

Introduction

In recent years there has been a growing interest for core calculi encompassing
distribution and mobility. In particular, these calculi have been studied as a
basis for programming languages. Examples include Join [9], Nomadic Pict [19],
Kells [2], Ambients [6], Klaim [16].

In this paper we study issues of correctness and optimisations in implementa-
tions of such languages. Although our technical work focuses on Ambient-based
calculi, we believe that the techniques can be of interest for the study of other
languages: those mentioned above, and more broadly, distributed languages with
mobility.

The underlying model of the Ambient calculus is based on the notion of
location, called ambient. Terms in Ambient-based calculi describe configurations
of locations and sub-locations, and computation happens as a consequence of
movement of locations. The three primitives for movement allow: an ambient to
enter another ambient (IN), an ambient to exit another ambient (OUT), a process
to dissolve an ambient boundary and obtain access to its content (OPEN).

A few distributed implementations of Ambient-like calculi have appeared [10,
11,17]. The study of implementations is important to understand the usefulness
of the model from a programming language point of view. Such studies have

* Work supported by european FET - Global Computing project PROFUNDIS.

J.-M. Jacquet and G.P. Picco (Eds.): COORDINATION 2005, LNCS 3454, pp. 17-32, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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shown that the open primitive, the most original one in the Ambient model, is
also the most difficult to implement.

Another major difficulty for a distributed implementation of an ambient-like
language is that each movement operation involves ambients on different hier-
archical levels. For instance, the ambients affected by an out operation are the
moving ambient and its initial and final parents; before the movement is trig-
gered, they reside on three different levels. In [4, 5] locks are used to synchronise
all ambients affected by a move. In a distributed setting, however, this lock-based
policy can be expensive. For instance, the serialisations introduced diminish the
parallelism of the whole system. In [10] the synchronisations are simulated by
means of protocols of asynchronous messages. The abstract machine PAN [11]
has two main differences. The first is that the machine executes typed Safe Am-
bients [13] (SA) rather than untyped Ambients. Typed SA is a variant of the
original calculus that eliminates certain forms of interference in ambients, called
grave interferences. These arise when an ambient tries to perform two different
movement operations at the same time, as for instance n[in h.P | out n.Q | R].
The second reason for the differences in PAN is the separation

between the logical structure of an ambient system and its physical distri-
bution. Exploiting this, the interpretation of the movement associated to the
capabilities is reversed: the movement of the open capability is physical, that
is, the location of some processes changes, whereas that of in and out is only
logical, that is, some hierarchical dependencies among ambients may change, but
not their physical location. Intuitively, IN and OUT reductions are acquisition of
access rights, and OPEN is exercise of them.

In PAN, the implementation of OPEN exploits forwarders — a common tech-
nique in distributed systems — to retransmit messages coming from the inside of
an ambient that has been opened. These lead to two major problems:

— persistence: along the execution of the PAN, some forwarders may become
useless, because they will never receive messages. However, these are never
removed, and thus keep occupying resources (very often in examples, the am-
bients opened are leaves, and opening them introduces useless forwarders).

— long communication paths: as a consequence of the opening of several ambi-
ents, forwarder chains may be generated, which induce a loss of performance
by increasing the number of network messages.

In this paper, we introduce GCPAN, an abstract machine for SA that is
more efficient than PAN. The main improvements are achieved through a better
management of forwarders, which in the GCPAN enjoy the following properties:

— finite lifetime: we are able to predict the number of messages that will be
transmitted by a forwarder, so that we can remove the latter once these
messages have all been treated;

— contraction of forwarder chains: we enrich the machine with a mechanism
that allows us to implement a union-find algorithm to keep forwarder chains
short, so as to decrease the number of messages exchanged.
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The basis of the algorithms we use (e.g., Tarjan’s union-find algorithm [18])
are well-known. However, adapting them to Ambient-like calculi requires some
care, due to the specific operations proposed by these languages.

We provide a formal description of our machine, and we establish a weak
bisimilarity result between PAN and GCPAN. We then rely on the correctness
of the PAN w.r.t. the operational semantics of SA, proved in [11], to deduce
correctness w.r.t. SA.

An original aspect of our analysis w.r.t. the proof in [11] is that we compare
two abstract machines, rather than an abstract machine and a calculus. This
involves reasoning modulo ‘administrative reduction steps’ on both sides of the
comparison to establish the bisimulation results. However, the fact that, in the
GcPAN, chains of forwarders are contracted using the union-find algorithm pre-
vents us from setting up a tight correspondence between the two machines. This
moreover entails that standard techniques for simplifying proofs of weak bisim-
ilarity results (such as those based on the expansion preorder and up-to tech-
niques) are not applicable. As a consequence, the bisimulation proof in which
the two machines are compared is rather long and complex. Still, deriving the
correctness w.r.t. SA through a comparison with PAN is simpler than directly
proving the correctness of our machine w.r.t. SA. This holds because PAN and
GCPAN are both abstract machines, with a number of common features.

We believe that our study can also be of interest outside Ambient-based
formalisms. For instance, the use of forwarders is common in distributed pro-
gramming (see e.g. [7,9]). However, little attention has been given to formal
specification and correctness proofs of the algorithms being applied. The formal-
isation of the management and optimisations of forwarders that we provide and,
especially, the corresponding correctness proof should be relevant elsewhere.

Outline of the paper. We present the design principles of the GCPAN in Sect. 2.
We then give the formal definition of the machine in Sect. 3, and describe the
correctness proof in Sect. 4. Sect. 5 gives concluding remarks.

1 The Machine: Design Principles

We introduce the Safe Ambients (SA) calculus [14] and the PAN abstract ma-
chine [11]. We then present our ideas to remedy to some inefficiencies of PAN.

1.1 Safe Ambients

The SA calculus is an extension of the Mobile Ambients calculus [6] in which a
tighter control of movements is achieved though co-capabilities. The four main
reduction rules are:

alinb.P | Q] | b[in b.R | S] +— bla[P | Q]| R|S] (IN)
blalout b.P | Q] |out b.R | S] ~— «a[P | Q]| bR |S] (OUT)
open b.P | blopen b.Q | R] — P |Q | R (OPEN)
(M) | (x)P — P{M/x} (COM)
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Co-capabilities and the use of types (notably those for single-threadedness)
make it possible to exclude grave interferences, that is, interferences among pro-
cesses that can be regarded as programming errors (as opposed to an expected
form of non-determinism). A single-threaded (ST) ambient can engage in at most
one external interaction, at any time its local process has only one thread (or
active capability). In the sequel, when mentioning well-typed processes, this will
be a reference to the type system of [14]. One of the benefits of the absence of
grave interferences is that it is possible to define simpler abstract machines and
implementations for ambient-based calculi: some of the synchronisation mecha-
nisms needed to support grave interferences in a distributed setting [10] are not
necessary (other possible benefits of SA, concerning types and algebraic theory,
are discussed in [14]).

The modifications that yield typed SA have also computational significance.
In the Mobile Ambient interaction rules, an ambient may enter, exit, or open
another ambient. The latter ambient undergoes the action; it has no control on
when the action takes place. In SA this is rectified: a movement is triggered only
if both participants agree. Further, the modifications do not seem to exclude
useful programming examples. In some cases the SA programs can actually be
simpler, due to the tighter control over interferences. We refer to [14] for details.

1.2 The PAN

The PAN [11] separates the logical distribution of ambients (the tree structure
given by the syntax) from their physical distribution (the actual sites they are
running on). An ambient named n is represented as as a located agent h: n[P]y,
where h is the physical location, k the location of the parent of the ambient, and
P is its local process. There can be several ambients named n, but a location h
uniquely identifies an ambient. The physical distribution is flat, so that the SA
process ab[c[] | P] | d[Q]] is represented by the parallel composition (also called
net) hi: allroot || h2: O[Pln, || h3: ¢[ln, || ha: d[@]n, . For the sake of simplicity,
and when this does not lead to confusion, we sometimes use a to refer to the
location of an ambient named a.

In the PAN, an ambient has only access to its parent location and to its
local process: it does not know its sub-ambients. This simplifies the treatment
of ambient interactions: communication between locations boils down to the
exchange of asynchronous messages (while manipulating lists of child locations
would mean setting many synchronisation points along computation).

In the PAN an ambient interaction is decomposed into three steps: an ambient
that wants to move first sends a request message to its parent and enters in wait
state. The father ambient then looks for a valid match to this request, and, upon
success, sends appropriate completion messages back, using the location names
contained in the request messages. The scenarios corresponding to the three kinds
of movement are depicted in Fig. 1, where white squares (resp. grey squares) rep-
resent locations (resp. locations in wait state), and arrows indicate messages.

We remark that, for IN and OUT moves, the decision is taken by the parent
of the moving ambient. Also note that in the OUT move, the grandparent, that
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actually receives a new child, does not take part in any interaction: this follows
the design of PAN, in which the relation between parent and child ‘goes upwards’.
Moreover, performing an IN or OUT movement does not trigger any physical
migration in the PAN, only the logical distribution of ambients is affected.

On the other hand, in an OPEN move, the code of the process that is local
to the ambient being opened (a in Fig. 1) is sent to the parent ambient (via a
reg message). Indeed, b has no access to its children, and hence it cannot inform
them to send their requests to b instead of a. The solution adopted in the PAN
is to use forwarders: any message reaching a will be routed to b by an agent
represented by a triangle in Fig. 1, and denoted by ‘h > k’ in the following (h
and k being the locations associated respectively to a and b).

The logical structure of the PAN is hence a tree whose nodes are either located
ambients or forwarders. Request (resp. completion) messages are transmitted
upwards (resp. downwards) along the tree.

The design ideas that we have exposed entail two major drawbacks in the
execution of the PAN: persistence of forwarders (even when there are no sub-
ambients and therefore no message can reach the forwarder), and long forwarder
chains which generate an overload in terms of network traffic.

1.3 The GcPaN

We now explain how we address the problems exposed above, and what influence
our choices have on the design of the PAN.

Counters. A forwarder can be thought of as a service provided to the children
of an opened ambient. Our aim is to be able to bring this service to an end
once there are no more children using it. At the same time, we wish to preserve
asynchrony in the exchange. For this, GCPAN agents are enriched with a kind
of reference counter. Forwarders have a finite lifetime, at the end of which they
are garbage collected. The lifetime of a forwarder intuitively corresponds to the
number of locations that point to it. A counter is decremented each time a
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3
2 0
Open
2
1 2 1
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Fig. 2. Depth and local counting Fig. 3. Problem with depth counting

message is forwarded. If the counter is zero, then the forwarder is a leaf in the
logical structure of the net and can safely be removed.
We can think of two ways of associating a lifetime to a forwarder (Fig. 2):

— (depth counting) The most natural idea is probably to decorate each located
ambient with the number of immediate sub-ambients it has. In doing this, we
ignore forwarders, because request messages that are routed via forwarders
can only be emitted by located ambients. This solution seems however dif-
ficult to implement, due to the asynchrony in the model. This is illustrated
by Fig. 3: if the ambient marked ‘*’ is opened, the counters along the whole
forwarders chain should be updated before any of the children can send a
message.

— (local counting) In our approach, we only consider the immediate children of
a location (hence the name local), including forwarders. As a consequence, we
may well have the situation where several sub-ambients are ‘hidden’ under a
forwarder, so that the counter at a given location has no direct relationship
with the number of sub-ambients. The difficulty described above does not
arise in this setting: the forwarders chain remains unaffected by the opening,
a located ambient becomes a forwarder, and this does not affect the counting.

Synchronisation Problems and Blocked Forwarders. In the local ap-
proach, one has to be careful in transmitting request messages. Consider for
instance the forwarder marked ‘*’ on the right of Fig. 2: each ambient marked
with a circle can send a request message. The intermediate forwarder cannot
forward directly these two requests, since the ‘*-forwarder’ is willing to handle
only one message. In the GCPAN, an agent can send only one message to a given
forwarder, and whenever this message is sent, the agent commits to relocate
itself if the agent it was talking to turns out to be a forwarder.

Implementing this policy is easy for located ambients, that enter a wait state
just after emitting a request message. We only have to decorate completion mes-
sages with the appropriate information for relocation. For forwarders, we need
to devise a similar blocking mechanism: once a forwarder has transmitted a re-
quest message, it enters a blocked state and waits for a go, completion message,
which contains the name of the location to which the next request should be for-
warded. Fig. 4 illustrates this (blocked forwarders are represented by reversed,
grey triangles): message {N} is emitted by the grey ambient, and then routed
towards the parent location, which has the effect of blocking forwarders along
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Fig. 4. Relocation of forwarders

the way. When {N} reaches the parent ambient, go_ messages are generated so
that forwarders can resume execution, just below the parent ambient. This way,
short communication paths between locations are maintained: at the end of the
scenario, message { M} is closer to its destination, without having been routed
yet. The technique we use is based on Tarjan’s union-find algorithm [18].

Remark 1 (Communication protocols). We comment on the way messages are
transmitted in the GCPAN:

— (race situations) Having blocked forwarders leads to race situations: consider
the scenario of Fig. 4, where messages {M } and {N} are sent at the bottom
of a chain of forwarders. When { N'} goes through the lowest forwarder, { M}
has to wait for the arrival of the former at the top of the chain, so that
a go, message is emitted to rearrange forwarders (following the union-find
algorithm). The loss, from {M}’s point of view, is limited: once {N} has
entered the parent location, {M} can reach the latter in three steps (the
go, message plus two routing steps).

— (relocation strategy) In the GCPAN, the ambient that sits at the end of a
forwarder chain broadcasts a relocation message (go, ) to all blocked for-
warders in the chain. In a previous version of our machine, this message was
propagated back along the chain, unblocking the forwarders in a sequential
fashion. We prefer the current solution because it brings more asynchrony
(race situations introduced a delay of n + 2 because the relocation message
had to go trough the whole chain in order to unblock all forwarders). On
the other hand, request messages carry more information in our approach
(we need to record the set of forwarders that have been crossed). However,
in practise, we observe that long chains of forwarders are very unlikely to be
produced in our machine, thanks to the contraction mechanism we adopt.
Consequently, such messages have in most cases a rather limited size.

Updating Counters Along SA Movements. Going back to the GCPAN tran-
sitions corresponding to the basic SA moves (the match transitions of Fig. 1), we
need to be able to maintain coherent counters along the three kinds of movement.
This is achieved as follows (the names we use correspond to Fig. 1):

IN: The overall result of the transition will be that ¢ decrements its counter, and
b increments its counter upon reception of the 0OKin completion.
OPEN: counters do not need to be modified.
OuT: in the PAN, the match between the capability and the co-capability is
done at b, and the grandparent c¢ is not aware of the movement. In the
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Fig. 6. Counters along an OUT move: our approach

GCPAN, b decrements its counter, a is unaffected, but, a priori, ¢ has to
increment its counter, since it receives a new child, a.

A possibility would be to let b pass the control on the move along to ¢, that is
then in charge of sending the completion messages: this solution is represented
in Fig. 5. Adopting this protocol means introducing a new kind of message in
the machine (message DoOut in Fig. 5, from parent to grandparent), and having
two agents in wait state (the child and the parent) while the control is at the
grandparent location.

We chose a different solution, that does not use an additional kind of message
and in which interaction is more local and asynchronous. It is depicted in Fig. 6:
at b, we create a new forwarder that collects the parent (b) and the child (a)
under a unique agent, so that the grandparent counter does not need to be
updated. It may seem rather counterproductive to add a new form of forwarder
creation this way, considering that our goal in designing the GCPAN is precisely
to erase as many forwarders as possible. We can however observe that:

— the created forwarder has a lifetime of 2, which is short;

— from the point of view of the implementation, the forwarder is created on
the parent site, so that the extra communication between the parent and the
forwarder will be local.

2 Formal Definition of the Machine

2.1 GcPAN Nets

The syntax of the terms of the GCPAN (referred to as GCPAN nets, or simply
nets) is presented on Table 1. Agents in the GCPAN are either located ambients
(h%: n[P]y is the ambient n[P] running at h, whose parent is located at k),
blocked or running forwarders (h<i® is a blocked forwarder at h, while h >° k is
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Table 1. GCPAN Syntax

a,b,m,n,.. € Names h,k,.. € Locations D, q,.. € Names U Locations
i,7,..€ N z,y,.. € Variables

Networks:
Agent := h>"k  (forwarder)
A= t t ;
| ggen . Ezgleat-‘g net) | h<t (blocked forwarder)
| h{Msg} (emission) | h': n[P]ir (located ambient)
| Ai | A2 (composition) .
| (wvp)A (restriction) Msg :=req/E (request).
| compl  (completion)
req :=inn,h (agent at h wants to enter n)
| inmn,h (agent at h, named n, accepts entrance)
| out m,h (agent at h wants to leave n)
open n, h (agent at h, named n, accepts openin
p g g
compl :==go h (request completed, go to h)
| go. h  (relocate forwarder to h)
| OKin h  (request in completed, go to h)
mig h request open completed, migrate to h
g
| reg® P (add P to the local processes)
Processes:

P :=0|P|P|(z)P|(vn)P| X | M.P|recX.P|M[P] | wait.P | (M) | {req}
M::x|n’ﬁ]\/[|inM!openM‘ﬁM’opﬁM‘outM

willing to transmit messages from h to k). In the three cases, the superscript
1 € N represents the value of the agent counter.

E denotes a list of locations. A message of the form k{req/E} denotes the
request req, located at k, and having been transmitted through the locations
contained in E. k{req} is an abbreviation for k{req/[]}, and we write h::E to
denote the list obtained by adding h to E. Reception ((x)P) and restriction
((vz)P) are binders. Given a process P, we let FL(P) stand for the set of free
locations of P. An occurrence in a process P is guarded if it appears under a
prefix or a reception. We suppose that in every process of the form rec X.P, all
occurrences of X in P are guarded.

Other aspects of the syntax of messages are explained in Subsection 3.2.

The definition of structural congruence, =, is mostly standard, and omitted.
The only peculiarity is that = does not allow a name restriction to be extruded
out of a located ambient in a transparent way: the net h: n[(vm)(in m)]; is
not equivalent to (vm)h: n[in mli. Such a transformation is handled using
reduction, and not as a structural congruence rule, because at the level of im-
plementation, generating names that are fresh even for possibly distant agents
involves a nontrivial distributed protocol.

The GCPAN (resp. PAN) encoding of a SA process P is written [P]g. (resp.
[P]). [P] is defined in [11], and [P]4. is defined as follows:
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Definition 1 (Translation from SA to GCPAN). Given an SA process P,
we define: [Plge £ root!: rootname[P];ootparent -

2.2 Reduction Rules

Fig. 7 presents the operational semantics of GCPAN nets. The following expla-
nations should help in reading the rules and understanding how they implement
the ideas we have discussed above.

Form of the Rules: Rules for emission of request messages and for local re-
ductions have the shape P hAk—> P’ > M, to denote the fact that process

m

P, running in ambient n at location h, may liberate message M and evolve into
process P’, k being the parent location of h. Integer ¢ decorating > records the
increment that has to be brought to h’s counter (cf. rule PROC-AGENT below).
> is an abbreviation of . When n, h or k are unimportant, we replace them
with ‘->. We do the same in the rules for consumption of completion messages,
when the parent location of a located ambient is not important.

In rule LocAL-CoM, P{z\M} denotes process P in which x is substituted
with M. In rule Loc-Rcv, we use the following notations, for E = [e1;...;e;]:
E{M} stands for ey {M} ||...|| e;{M}, and #FE is i.

Six Kinds of Rules govern the behaviour of a GCPAN net, according to the
way SA transitions are implemented in our model.

— Before being able to start interacting, a process might have to allocate new
resources for the creation of new names and for the spawning of new ambi-
ents: this is handled by the rules for creation.
The translation of a prefixed SA process starts with emitting a request for
interaction, which is expressed by the corresponding four rules for emission
of request messages.
Request messages are transmitted through forwarders and reach their desti-
nation location via the rules for transmission of request messages.
Local reductions describe the steps that correspond to SA transitions. Such
reductions do the matching between a capability and the corresponding co-
capability, and generate completion messages.
Notation > is introduced similarly to >, in order to handle the OUT move-
ment, that is achieved using rule PROC-AGENT’. The subscript k&’ denotes
the source location of the created forwarder (we have to adopt a special
treatment for this case because the newly created forwarder is outside the
‘active location’).
— Some rather standard inference rules are used to transform a local reduction
into a transition of the whole GCPAN net.
The premises about unguarded ambients insure that all sub-ambients of an
ambient are activated as soon as possible (rule NEW-LOCAMB), before any
local reduction takes place — here we exploit the fact that recursions are
guarded, otherwise there could be an infinite number of ambients to create.
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Creation
[NEw-Locams] h': m[n[P]|Qln +— A m[Qlw || (vk)(K°: n[P]y) k¢ FL(P)
[NEW-RES] Rt m[(wn)Ply — (vn)(h': m[P]x)

Emission of request messages

[REQ-IN] in m.P — wait.P > k{in m, h}

[REQ-COIN] inn.P % wait.P > k{in n, h}

[REQ-OuT)] out m.P hL_) wait.P > k{out m, h}

[REQ-COOPEN] open n.P 737 wait.P > k{open n, h}
Transmission of request messages

[FW-SEND] h> k|| h{req/E} +— h<' | k{req/h:E}
[Fw-SENDGC] h>t k| h{req/E} +— k{req/E}

[Fw-RELOC] h < ||h{go. k} — hD>'k

[Loc-Rev] KT n[Ply || h{req/E} +—— h*"T#E: n[P|{req}]x || E{go. h}
Local reductions

[Locar-Cowm] (M)|(z).P — P{z\M} > 0

[LOCAL-IN] {in n,h}|{in n, k} —— 0 > h{go k} | k{0Kin h'}
[LocarL-OuT) {out n,h}|out n.P —— P 3> higo k'}

[LOocAL-OPEN] open n.P | {open n,h} — wait. P > himig h'}

Inference rules

P % P > M @ has no unguarded ambient

B n[PQle — T nlP QL | M
P %5, P s> M Qhasno unguarded ambient, k' ¢ FL(P|Q)

h:n
WP Qe — k) (F 52 k([ A% (P [ QL | M)

[PROC-AGENT]

[PROC-AGENT’]

Ar— A Ar— A

[PAR-AGENT] ; ; [RES-AGENT]

AllB — A'||B (vp)A — (vp)A

A = A/ A/ RN A// A// = A///
[STRUCT-CONG] T A
Consumption of completion messages
[COMPL-PARENT)] h{go k} || h*: n[P|wait.Q]- +—— h* n[P|Q)x
[CoMPL-COIN] h{0Kin k} | h*: n[P|wait.Q]- +— A" n[P|Q]k
[CoMPL-MIGR] h{mig k} | """ n[P|wait.Q]- +—— h>"" k| k{reg® P|Q}
[CoMPL-MIGR/| h{mig k} || h°: n[P|wait.Q]- +— k{reg' P|Q}

[CoMPL-REG] h{reg® R} | h't*: n[P|wait.Q]x +—— h': n[P|Q|R]x

Fig. 7. Reduction rules
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The rules for consumption of completion messages describe how agents re-
sume computation when they are informed that a movement has occurred.

Counting: Counters have to be kept coherent along the transitions of a net.
Intuitively, to understand the counting for an agent located at h, in a given
GCPAN configuration, we have to consider:

the number of non waiting ambient locations that are immediate children of
h (of the form k': n[P]);

the number of child forwarders (k >% h);

the number of request messages emitted to h (h{req/E});

the number of completion or relocation messages whose effect will be to
increment the number of immediate children of h (k{go h}, k{go h}, ...).

We explain below how our accounting is preserved along the moves:

IN: The two brother ambients taking part in an IN move (h and k) are
in wait state at the moment when the parent ambient (h’) matches the
corresponding requests. Ambients in wait state are pending, and hence are
not taken into account by the counter of h’. As a consequence, I/ has to
increment its counter in rule LOCAL-IN. The role of the completion message
k{0Kin A’} is to bring k under A’ (which was its original father in case there
was no forwarder between h and h’). Similarly, h, that will receive h’ as a
new child (message h'{go h} and rule COMPL-PARENT), also increments its
counter, upon reception of message 0Kin (rule CoMPL-COIN).

OuT: As previously, the intuition is that the parent (k') loses a child (h),
and has to decrement its counter, but since this child is in wait state, there
is nothing to do. The freshly created forwarder allows us to keep the grand-
parent counter unaffected: the forwarder hides both parent and child (and
hence the value of its counter is set to two).

OPEN: The opening location (k') increments its counter to take into account
the creation of the forwarder (rule COMPL-MIGR, that lets h, the opened
location, react to a mig completion message). In the case where the counter
of h is null, A has no child: there is no need for such a forwarder, and we
avoid creating it (rule COMPL-MIGRGC). We must be careful, though, to let
h' know that it has to undo the increment of its counter, which is achieved
using the flag s decorating the reg message (rule COMPL-REG).

Forwarders Behaviour is defined by the rules for transmission of request mes-
sages. We illustrate these by the following reductions, that show the behaviour
of a message carrying request R traversing three forwarders hi, he and hg to
reach its real target:

h{R/(} | b2 ho || ho " by || ha >t K || & n[P]

1 < | ho{R/[h)} || ha o ks || hs 5%k || k2: n[P) [Fw-SEND]
—  hy <? || ha{R/[h1]} || h3 >* K || K2 n[P) [FW-SENDGC]
< || hy <® || K{R/[hs:ha]} | K2 n[P)] [Fw-SEND]
—— hy<? || hy<® | ha{gouk} | halgopk} | K% n[P|{R}]  [Loc-Rev]
— hy <? || hy{go k} || hs >3k | k% n[P|{R}] [Fw-RELOC]
— hi D2k || ha>3 k|| k3 n[P|{R}] [Fw-RELOC]
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First, the message gets transmitted by forwarder h;, which decrements its
counter, adds its name to the list decorating the message before transmission to
ho, and blocks. In the second step of transmission, since hy’s counter is equal to
one, ho gets garbage collected, and the message is passed to hs, which transmits
it to k (along the lines of the first step). Then the target location k receives the
message, and reacts by broadcasting a gog k relocation message to each agent
that has been registered in the list decorating the message. k’s counter is incre-
mented by the size of this list minus one: all forwarders except the uppermost
one will become new direct children of the parent location (note that in the
case of an empty chain of forwarders, we decrement the counter because the
direct child is in wait state, and hence pending). Finally, the blocked forwarders
react to the relocation messages by moving to their new location, and resume
computation.

3 Correctness of the Machine

We establish the correctness of our machine by showing a weak barbed bisimi-
larity result with the PAN. Although the overall structure of the proof has sim-
ilarities with [11], there are important differences. First of all, we compare two
abstract machines, rather than a machine and a calculus as in [11]. The corre-
spondence we can make between two configurations of the PAN and the GCPAN
is fairly coarse (barbed bisimilarity), because the machines route messages and
manage forwarders differently.

Also, a few results, that are crucial in the proof for PAN [11] do not hold for
GcPAN. For instance in PAN, we have

(vh)(ht>k || A) = A{k\h},
where = stands for expansion, a behavioural preorder that guarantees that, intu-
itively, if P > @, P exhibits the same behaviour as () modulo some extra internal
computation (expansion is not explicitly mentioned in [11], but the technique
is essentially equivalent). This makes it possible, using weak bisimulation up to
expansion, to factorise reasoning about forwarders and to considerably reduce
the size of the relations needed to establish bisimilarity results.

Unfortunately the corresponding expansion law does not hold in our setting.
This is due to the way the union-find algorithm works: rearranging forwarders
entails an initial cost, and generates race situations. This cost is later compen-
sated by the fact that messages are transmitted on shorter chains. This kind of
delayed improvement cannot be captured using expansion because P > @ if @
is ‘better than P’ at every step (see [12] for a proof of the non-expansion result).

The notion of equivalence we adopt is barbed bisimulation [15], that we de-
note ~. Here we use it to compare states belonging to different transition sys-
tems.

In GCPAN the observability predicates |}, (where n is any name) are defined
as follows. A is observable at n means, intuitively, that A contains an agent n
that accepts interactions with the external environment. Formally: A |,, if A =
(vD) (root: rootname[{M, h} | Plrootparent || A’) where M € {in n, open n}



30 D. Hirschkoff, D. Pous, and D. Sangiorgi

and n ¢ D (here p stands for a set of names or localities). Then, using > for
the reflexive and transitive closure of —, we write A {},, if A =>],,. In SA and
PAN, observability is defined similarly (see [11]). Our main results are:

Theorem 1. For any well-typed SA process P, we have [P] ~ [P]ge.

Corollary 1. Let P be a well-typed SA process, then [P]g. ~ P.

Proof: By [11], we have [P] = P. Theorem 1 allows us to conclude. &

The above corollary implies, for instance, that for all n, P {,, iff [P]gc 4n.

For lack of space, we only give the main intuitions behind the proof of The-
orem 1 (the reader is referred to [12] for details). The first step is to introduce a
notion of well-formed net, and to show that it is preserved by reduction. Well-
formedness allows us to express which nets are ‘reasonable’, in particular w.r.t.
the destination of messages and the value of counters.

In PAN and GCPAN, the routing of messages is deterministic and does not
change the bisimilarity class of a net. Therefore, the main idea in introducing
the candidate bisimulation relation to establish Theorem 1 is to define a kind
of normal form for nets, in which all messages are routed to their destination
and the nets in both machines can be compared directly. Based on this, we
derive some preliminary lemmas to show that whenever a message is routed
to its destination in a given configuration of one of the machines, the other
machine can do the same (this might involve some additional transitions in
the GCPAN, because, as seen above, race conditions may prevent a message
from being ‘directly routable’). These lemmas are then used in a modular way
to construct the bisimulation proof, that amounts to show that by definition,
processes related by the candidate bisimulation exhibit the same observables
and preserve this property.

4 Final Remarks

Developments of our machine. Besides ST ambients, the other main type for
SA processes [14] is that of immobile ambients (IM). An immobile ambient is
an ambient that can neither move (in or out other ambients), nor be opened
(open co-capability). Such an ambient is not necessarily single-threaded. We
have designed an extension of the GCPAN [12] to handle immobile ambients as
well.

We have also developed a prototype OCaml implementation of the (extended)
GCPaAN, that is described at [1]. We plan to exploit it to further evaluate the
improvements in terms of efficiency brought by our machine.

Related Work. Cardelli [4,5] has produced the first implementation, called Am-
bit, of an ambient-like language; it is a single-machine implementation of the
untyped Ambient calculus, written in Java. The algorithms are based on locks:
all the ambients involved in a movement (three ambients for an IN or OUT
movement, two for an OPEN) have to be locked for the movement to take place.
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In [10], a JoCaml implementation of an abstract machine for Mobile Ambi-
ents, named AtJ, is presented. In Mobile Ambients, there are no co-capabilities,
movements are triggered using only capabilities, and grave interferences arise.
These differences enable considerable simplifications in abstract machines for SA
(PAN, GCPAN) and in their correctness proof — see [11] for a detailed compari-
son. Other differences are related to the distinction between logical and physical
movements: in AtJ physical movements are triggered by the execution of in and
out capabilities, whereas in GCPAN only open induces physical movement.

[17] presents a distributed abstract machine for the Channel Ambients calcu-
lus, a variant of Boxed Ambients [3]. In Channel Ambients the open primitive —
one of the most challenging primitives for the implementation of Ambient calculi
— does not exist (open is dropped in favour of a form of inter-ambient commu-
nication). Although in the implementation [17] actual movement of code arises
as a consequence of movement of ambients, the phenomenon is not reflected in
the definition of the Channel Ambient calculus. Therefore, the main problems
we have been focusing on do not appear in that setting.

In the Distributed Join calculus [8], migrating join definitions are replaced in
the source space with a forwarder, to route local messages to the join definition
at its new location. This phenomenon is reminiscent of the execution of OPEN
reductions in our machine.
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Abstract. The definition of suitable abstractions and models for identifying, un-
derstanding and managing Quality of Service (QoS) constraints is a challenging
issue of the Service Oriented Computing paradigm. In this paper we introduce a
process calculus where QoS attributes are first class objects. We identify a mini-
mal set of primitives that allow capturing in an abstract way the ability to control
and coordinate services in presence of QoS constraints.

1 Introduction

Service Oriented Computing (SOC) [14] has been proposed as an evolutionary paradigm
to build wide area distributed systems and applications. In this paradigm, services are
the basic building blocks of applications. Services are heterogeneous software compo-
nents which encapsulate resources and deliver functionalities. Services can be dynami-
cally composed to provide new services, and their interaction is governed in accordance
with programmable coordination policies. Examples of SOC architectures are provided
by WEB services and GRID services.

The SOC paradigm has to face several challenges like service composition and adap-
tation, negotiation and agreement, monitoring and security. A key issue of the paradigm
is that services must be delivered in accordance with contracts that specify both client
requirements and service properties. These contracts are usually called Service Level
Agreements (SLA). SLA contracts put special emphasis on Quality of Service (QoS)
described as a set of non functional properties concerning issues like response time,
availability, security, and so on.

The actual metric used for evaluating QoS parameters is heavily dependent on the
chosen level of abstraction. For instance, when designing network infrastructures, per-
formance (with some probabilistic guarantees) is the main QoS metric. When describ-
ing multimedia applications, visual and audible qualities would be the crucial param-
eters. Instead, for final users, the perceived QoS is not just a matter of performance
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but also involves availability, security, usability of the required services. Moreover, the
user would like to have a certain control on QoS parameters in order to customize
the invoked services, while network providers would like to have a strict control over
services. The resolution of this tension will be inherently dynamic depending on the
run-time context.

In our view, it is of fundamental importance to develop formal machineries to de-
scribe, compose and relate the variety of QoS parameters. Indeed, the formal treat-
ment of QoS parameters would contribute to the goal of devising robust programming
mechanisms and the corresponding reasoning techniques that naturally support the SOC
paradigm. In this paper we face this issue by introducing a process calculus where QoS
parameters are used to control behaviours, i.e. QoS parameters are first class objects.

The goal of the present paper is to identify a minimal set of constructs that provide
an abstract model to control and coordinate services in presence of QoS constraints.
This differentiates our proposal from other approaches. In particular, process calculi
have been designed to model QoS in terms of performance issues (e.g., the probabilistic
n-calculus [15]). Other process calculi have addressed the issues of failures and failure
detection [13]. Process calculi equipped with powerful type systems have also been put
forward to describe the behavioral aspects of contracts [11, 10, 9].

Some preliminary results towards the direction of this paper can be found in [3, 4].
Cardelli and Davies [3] introduced a calculus which incorporates a notion of communi-
cation rate (bandwidth) together with some programming constructs. In [17, 8,4] a (hy-
per)graph model to control explicitly QoS attributes has been introduced. The graphical
semantics allows us to describe interactions in accordance with the agreed QoS level
as optimal paths in the model thus creating a bridge between formal models and the
protocols used in practice. Here, we elaborate on [4] with the aim of bridging further
the gap between formal theories and the pragmatics of software development.

Fundamental to our approach is the notion of QoS values; a QoS value is a tuple of
values and each component of the tuple indicates a QoS dimension. The values of the
fields can be of different kind, for instance, the value along the latency dimension could
be a numerical value but the security values could have the form of sets of capabilities
indicating the permissions to perform some operations on given resources, e.g. read or
write a file. Compositionality of QoS values is therefore a key element of our approach:
the composition of QoS values will be a QoS value as well. Indeed, one might want to
build a QoS value based on latency, availability and access rights of a service.

To guarantee compositionality of QoS parameters, we shall require QoS values to be
elements of suitable algebraic structures, called constraint semirings (c-semirings, for
short), consisting of a domain and two operations, the additive (+) and the multiplica-
tive (-) operations, satisfying some properties. The basic idea is that the former is used to
select among values and the latter to combine values. C-semirings were originally pro-
posed to describe and program constraints problems [2]. Several semirings have been
proposed to model QoS issues. For instance, general algorithms for computing shortest
paths in a weighted directed graph are based on the structure of semirings [12]. The
modelling of trustness in an ad hoc networks exploits the semiring structure [16]. C-
semiring based methods have a unique advantage when problems with multiple QoS
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dimensions must be tackled. In fact, it turns out that cartesian products, exponentials
and power constructions of c-semirings are c-semirings as well.

Our process calculus, KoS, builds on Kram (Kernel Language for Agent Interac-
tion and Mobility) [5]. KLaM is an experimental kernel programming language specifi-
cally designed to model and program wide area network applications with located ser-
vices and mobility. KLamv naturally supports a peer-to-peer programming model where
interacting peers (nodes in Kram terminology) cooperate to provide common sets of
services. KoS primitives handle QoS values as first class entities. For instance, an
overlay network is specified by creating nodes (node,(t)) and new links (s A 1) and
indexing them with the QoS value « of the operation. Thus, for instance the expression
s ~ t states that s and 7 are connected by a link whose QoS parameters are given by «.

The operational semantics of KoS ensures that the QoS values are respected dur-
ing system evolution. Suppose for example that node s would interact by an operation
whose QoS value is ¥’ with node 7 along the link s ~ 7. This interaction will be allowed
provided that the SLA contract of the link is satisfied, namely, " < «.

We shall illustrate the expressiveness of the calculus through several examples. This
can appear as an exercise in coding a series of linguistic primitives into our calculus
notation, but it yields much more because the encodings offer a practical illustration
of how to give a precise semantic interpretation of QoS management. Indeed, the main
contribution of this paper is the careful investigation of a minimal conceptual model
which provides the basis to design programming constructs for SOC. We focus on the
precise semantic definition of the calculus because it is a fundamental step to design
programming primitives together with methods supporting the correct usages of the
primitives and the formal verification of the resulting applications.

The rest of the paper is organized as follows. In the next section we illustrate a
motivating example and, in Section 3, we introduce syntax and semantic of KoS. In
Section 4, we deal with expressivity issues and in the subsequent one we present a
more complex scenario and show how it can be tackled by following our approach.

2 A Motivating Example

Before introducing the formal definition of KoS, we prefer to show its usefulness by
modelling a realistic, but simplified, example. Our purpose here is to give a flavour of
the underlying programming paradigm. We consider a scenario where n servers provide
services to m clients and we focus on balancing the load of the servers. Clients and
servers are located on different nodes; a generic client node has address ¢; while a
generic server node has address s;. Clients issue requests to servers by spawning process
R from their node to a server node. For simplicity, we abstract from the actual structures
of QoS values, and we assume that clients and servers “knows” each other and cannot
be created dynamically. Adding dynamicity is straightforward.
A generic client node M;, fori € {1,...,m}, is described by the following term:

def
M; = ¢ (s,k) | oo | (ke | 1Cs.

Intuitively, M; represents a network component with address c;, containing tuples of the
form (s;, k;), for j € {1,...,n}, and running process !Cs. Each tuple (s}, ;) represents
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the load «; of the server s; that the client perceives, thus the whole set of tuples repre-
sents a sort of directory service containing the SLA contract with the available servers.
Operator ! is the replication operator: !Cs represents an unbounded number of concur-
rent copies of process Cs. Finally, process Cs specifies the behaviour of the client and
is defined as follows:

Cs = (u, W).e,[Rleu.con,s(u).(u, v - 6.

Initially, the client selects a server by non-deterministically inputting a tuple by means
of the operation (?u, ?v). Once the input is executed, variables u# and v are instantiated
with the server name and its load, respectively. Afterward, the client tries to spawn
process R to the selected server u. Execution of &,[R]eu takes place only if a “suitable”
link toward u exists. What here is meant for “suitable” is that the load v of the client
must not exceed the value on the link. Then, since remote spawning consumes the links
traversed during the migration, the client attempts to re-establish a connection with
u by executing con,.s{u). Notice that the operation con,.s{u) is used by the client to
ask for a link with a QoS value increased of a quantity 8. Once the connection has
been established, the client updates its SLA view of the servers load by inserting tuple
(u,v - 9) into its local directory service.

A generic server N;, for j € {1,...,n}, is described as follows:
def , ,
N; = sjuhy | Lenkp) | oo | Lem k) |
'Scersp) | | WS cms).

Similarly to clients, N; encapsulates a directory service containing SLA data about the
clients. This directory service is formed by tuples of the form {c;, «}), fori € {1,...,m},
each recording the QoS value «; assigned to the link towards node c;, and by the current
load of the server, represented by a tuple containing a natural number (k). For any
client ¢; there is a load manager S c; s; which decides whether a link with ¢; can be
re-established or not. Process S ¢ s is written as follows:
Scs C ODIF, I < max
then (c, Wv).acc . (c).{c, f(v, D).

The load manager repeatedly acquires the tuple () (current load) and compares it with
the maximum admissible load (max). Then, the process decides whether to accept re-
quests for new connections coming from the client: the link is created only when 4 is
less than max. The QoS value of the new link is computed by a function f and depends
on both the old QoS value and the current load.

Finally, we assume that process R representing clients service requests is a sequen-
tial process of the form

R def (?x).{x + 1)...actual request ...(7y).(y — 1),

Namely, R has a prologue and an epilogue which respectively increments and decre-
ments the counter that measures the server load.
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3 The Calculus

This section introduces KoS a calculus that provides a set of basic primitives for
modelling and managing QoS values. A KoS term represents a net made of nodes
which model places where computations take place or where services can be allo-
cated/accessed. We assume as given a set of nodes S (ranged over by s, ,...) that
are connected by links representing the middleware infrastructure, i.e., the interactions
between two nodes can take place only if they are connected by a sequence of links.
Links are weighted by “measures” that represent the QoS value of the connections.

3.1 QoS Values as Constraint Semirings

We assume existence of a set of QoS values C, ranged over by «, that forms a constraint
semiring [2] (c-semiring).

Definition 1 (C-semiring). An algebraic structure (A, +,-,0,1) is a c-semiring if A is
a set (0,1 € A), and + and - are binary operations on A that satisfy the following
properties:

— + (additive operation) is commutative, associative, idempotent, 0 is its unit element
and 1 is its absorbing element;

— - (multiplicative operation) is commutative, associative, distributes over +, 1 is its
unit element, and 0 is its absorbing element.

Operation + induces a partial order on A defined asa <4 b <= a+ b = b. The
minimal element is thus 0 and the maximal 1. a <4 b means that a is more constrained
than b.

An example of c-semiring is {w, min, +, +0,0), where w is the set of natural num-
bers, the minimum between natural numbers is the additive operation and the sum over
natural numbers is the multiplicative operation. Notice that in this case the partial order
induced by the additive operations is the inverse of the ordinary total order on natu-
ral numbers. Another example of c-semiring is (p({A}), U,N, D, A}), where 9(A) is the
powerset of a set A, and U and N are the usual set union and intersection operations.

KoS does not take a definite standing on which of the many c-semiring structures
to use. The appropriate c-semiring to work with should be chosen, from time to time,
depending on the kind of QoS dimensions one intends to model. Below, we introduce
some c-semiring structures together with the QoS dimension they handle:

({true, false}, V, A, false, true) (boolean): Network and service availability.
(Real+, min, +, +00,0) (optimization): Price, propagation delay.

(Real+, max, min, 0, +c0) (max/min): Bandwidth.

([0, 1], max, -, 0, 1) (probabilistic): Performance and rates.

([0, 1], max, min, 0, 1) (fuzzy): Performance and rates.

2N, u,N, 0, N) (set-based, where N is a set): Capabilities and access rights.

C-semiring based methods have a unique advantage when problems with multiple
QoS criteria must be tackled. In fact, it turns out that cartesian products, exponentials
and power constructions of c-semirings are c-semirings as well.
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Table 1. KoS Syntax

N,M ::= NETS
0 Empty net
| s=P Located Process
| s 1 Link
| (vs)N Node restriction
| N||IM Net composition
PO = PRrROCESSES
0 Null process
| y.P Action prefixing
| (vs)P Restriction
| P | Q Parallel process
| P Iteration
b% = PREFIXES
node (t) Node creation
| cont) Connection request
| acct) Connection acceptance
| (T) Input
| Wiy, v Output
| edPlet Remote process spawning
T w=¢ | v | 2x | =v | T, T  INPUT TEMPLATES
3.2  Syntax

The syntax of KoS is presented in Table 1. Other than the existence of C, existence of
a set of names N (ranged over by r, s and ¢) is assumed. First-class values, ranged over
by u and v, can be either QoS values or names.

The syntax for nets permits the (possibly empty) parallel composition of located
processes and links. A located process s :: P consists of a name s, called the address
of P, and the process P running at s. A link s A t states that s and 7 are connected by
a link whose QoS value is k. The net (v s)N is a net that declares s as restricted in NV,
which is the scope of the restriction.

The syntax for processes is standard. The symbol 0 overloads the symbol for empty
nets; however, the contexts will clarify whether it refers to processes or nets. Prefixes y
encompass actions for

— creating a node (node,(t)) or a connection to/from another node (con,(t), acc(t)),
— exchanging tuples of values ((T") and (vi,...,v,)),
— remotely spawning a process (g,[P]er).

Links are oriented, indeed s ~ 7 allows a process to be spawned from s to ¢ but not the
viceversa. The creation of new links is obtained by synchronising actions con,(t) and
accy(s) performed at s and ¢, respectively.

Communication involves exchange of tuples (i.e. finite sequences) of values that are
retrieved via pattern matching. Input prefixes use templates T, namely finite sequences
of values or placeholders (written as ?7x). Execution of an output prefix causes gener-
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ation of a tuple of values vy, ...,v,. Both the empty template and the empty tuple are
denoted by . Hereafter, we let t range over tuples of values and, given a template 7
and a tuple t, we let 7; and t; denote the i-th element of 7' and t, respectively.

The placeholder ?x binds the occurrences of x in the rest of the template, namely,
in ?7x,T, the scope of ?x is T. The set bn(T) collects the names bound in 7 while
fn(T") denotes the names having free occurrences in T’; their definitions are standard.
We consider as equivalent those templates that differ only for renaming of bound names.
The template —v tests for inequality, namely, it requires the matching tuple to contain
a value different from v (see Definition 7). The only binders of the calculus are the
placeholder ?x and the node restriction v s. Note that node names might be QoS values
(e.g., for specifying access rights), hence, we write fn(x) to denote the names appearing
in k. Moreover, we require that QoS values do not bind node names, therefore, bn(x)
is empty, for any QoS value x. We formally define free and bound names of nets and
processes as follows. In the following we write fn(_, _) (resp. bn(_, -)) as an abbreviation
for fn(_) U fn(L) (bn(-) U bn(L), respectively).

Definition 2 (Free and bound names). The free names of prefix actions are defined
as expected: tn(y) = fn(k) U {s}, if y € {nodes), cons),acc,(s)}, In((T)) = n(T),
fn((vi,...,vy) = fn(vy) U... U fn(v,) and fn(g[Ples) = fn(k, P) U {s}. Bound names
of y are defined similarly, e.g., bn((T)) = bn(T) and bn(g,[Ples) = bn(P) (while in the
remaining cases is the empty set).

The sets fn(_) and bn(_) of free and bound names of processes and nets are defined
accordingly. The only non-standard case is that for links where we let fo(r ~ s) =
fn(k) U {s, r} and bn(r ~ s) = 0.

As usual, processes or nets obtained by a-converting bound names are considered
equivalent. Moreover, we assume the following structural congruence laws.

Definition 3 (Structural congruence). The relation =pC PX P is the least equivalence
relation on processes (containing a-conversion and) satisfying the following axioms:

— (P, | ,0) is a commutative monoid;
- P=pP | P

The relation =C N XN is the least equivalence relation on nets (containing a-conversion
and) satisfying the following axioms:

(N, | ,0) is a commutative monoid;
ifP=p Qthens: P=s: Q;

—-suP | OQ=ss=Plls::Q;

s (wHP=Wi(s:: P)ift+s;
VNI M)=NI (vM, if s ¢ in(N);
- (vs)(vH)N = (vt)(v s)N.

The last axiom of Definition 3 states that the order of the restrictions is irrelevant, hence
we can write (v sy, ..., s,)N instead of (v s1)...(vs,)N.
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33 Semantics

We define the operational semantics of K0S by means of a labelled transition system
that describes the evolution of nets. In the semantic clauses, it is useful to define a
function that, given a net N, yields the names that are used as node addresses in the net.

Definition 4 (Addresses). Let addr be the function given by:

0, N=0VN=s~1
_ ) {s) M=s:P
addr(N) =1 2 adr(m) \ (s}, N=@wsM

addr(N;) U addr(N,), N = N; || N,.

Notice that addr(N) C fn(N), but not necessarily addr(N) = fn(N), for instance if
N = s 2 ().0 then fn(N) = {s,¢} while addr(N) = {s}. Basically, addr(/N) collects
those free names of N that effectively occur in N as address of some node.

Definition 5 (Localized Actions). Let y be a prefix, then the localized prefix y@s is
defined as follows:

y@s = {s e(Py@r ify= §K(P)@t
sy otherwise

The syntax of localized actions « is given below:
a=y@s | slinkt | 7
We let fn(y@s) = fn(y) U {s} and bn(y@s) = bn(y).

Definition 6 (Nets semantics). The operational semantics of nets is given by the rela-
tion = C N X (a X C) X N. Relation — is defined by the rules in Table 2 and the

following standard rules:

N> M N=N -SM=M
(RES) ———F—— (STR) ©
(vs)N — (vs)M N—->M
K K
@ !
) N—>N ¢ [pn@ N (M) =0 A
NIMS> N [ m | @ddr(V)\ addr(N) N addr(M) = 0
K

Intuitively, N > M states that the net N can perform the transition a to M by exposing

K

the QoS value «. Clearly, all local transitions (communications, node or link creations)
have unitary QoS value, while the only non-trivial QoS values appear on the transitions
that spawn processes or show the presence of links. Let us give more detailed comments
on the rules in Table 2.

Rule (LiNk) states that a link within a net disappears once it has been used. These
transitions are used in the premises of rules (RouTe) and (LaND) for establishing a path
between two nodes such that a remote evaluation can take place.
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Table 2. Network semantics

K s link
(LINK) s ~t AN 0
K
y@s
(PREF) s y.P T) s 2 P,y ¢ {nodet), cons),acc,(s)}
de(t) K
(NODE) s nadeK(z).P%)s:: Plls~t]t::0,s#¢t
s con,(t) N M taccy(s) o
(con) 1 1 K<K

N||M—;>N'||M'||sﬁz

(LEVAL) s glQles.P %) st Pls:Q
«P)Y@t link '
NSy MBS ek <k
(ROUTE) aper / ,t#ET
NIM———>N M
K K
r ei(P)@t , rlink t , ;o
—> N M—— M K-k <k
(LAND) K = K
N”MﬁN/”M/”l‘P
K K
s(T) , st ,
N—>N M — M < (T,t) =0
(comm) 1 1

N||M%>N’a'||M’

Rule (prEF) accounts for action prefixing; node creation, however, deserves a specific
treatment that is defined in rule (NopE). The side condition of (PREF) also states that no
link from s to itself can be created. Indeed, we assume that transitions that involve only
the local node have unitary QoS value and are always enabled.

Rule (NopE) allows a process allocated at s to use a name ¢ as the address of a new
node and to create a new link from s to ¢ exposing the QoS value «. The side condition
of (par) prevents that new nodes (and links) are created by using addresses of existing
nodes.

Rule (con) adds a new link between two existing addresses s and ¢; the link is created
only if the processes at s and ¢ satisfy the SLA contract. More precisely, the accepting
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node ¢ is willing to connect only to those nodes that declare a QoS value lower than «’. If
this condition holds, a new link is added to the net, such link has the QoS value exposed
by s. One can think of s as asking for the connection with at least some characteristics
expressed by « and ¢ establishes the connection only when it can enforce the requirement
of s, namely k < «’.

Rule (LEvAL) states that the local spawning of a process is always enabled while rules
(rouTE) and (LAND) control process migration and require more detailed explanations. A
remote spawning action g,[P]et consists of the migrating process P, the arrival node ¢
and a QoS value « expressing that P must be routed on a path exposing a QoS value' at
most «. Differently from the local spawning of processes, remote spawning is not always
possible, it is indeed mandatory that the net contains a path of links from the starting
node s to the arrival node z. Moreover, the SLA contract of the path between s and ¢
must not exceed the value « that the spawner has declared. Notice that this semantically
describes the SLA agreement on the mobility of processes. This is formally achieved
by rules (RouTE) and (LAND). More specifically, rule (ROUTE) states that, if the migrating
process can go through an intermediate node r and a link from r to a node r" # ¢ exists,
the QoS value «’ of the partial path from s to r composed with the value « of the link
from r to r’ must be lower than «. If this is the case, a transition can be inferred stating
that P, spawned from s, can go through r’ exposing the QoS value «’ - ¥”. Rule (LAND)
is similar to (ROUTE) but describes the last hop of P, namely when the target node ¢ is
reached. In this case, P is spawned at ¢, provided that the QoS value of the whole path
that has been found is lower than «.

Rule (comm) establishes that a synchronization takes place provided that sender and
receiver are allocated at the same node and that the template and the tuple match accord-
ing to the definition below. Hereafter, we use o to denote a substitution, i.e. a map from
names to names and QoS values, and o[0”'] to denote the composition of substitutions,
i.e. the substitution o’ defined as follows: o’ (x) = ¢”(x) if x € dom(o”), o’ (x) = o (x)
if x € dom(o) — dom(o”).

Definition 7 (Pattern matching). A template T and a tuple t match when the following
function is defined

£ f(T=eANt=g)V(T =v A t=V)

g ifT==v At=Vv Av£y

{"/x} ifT=2x A t=v

olo’] fT=FT ANt=v,t A =(Fv)=0cA =(T'o,t)=0’

ba (T, 1) =

where the application of a substitution to a template, To, is defined as follows:

£ ifT =¢
Tor = v,T' o ifT =x,T" N o(x)=v
7= x, T o ifT =x,T" A x ¢ dom(o)

2, T o{*/+} ifT =2x,T'.

Under the conditions of (comm), the substitution »< (7, t) is applied to the receiver. Note
that = may not be defined, for instance > (—s, 5) does not yield any substitution and,
therefore, the match in such a case does not hold.

K1 K, .
! The QoS value of a path sg — s ..., — S, is defined as k| - ... - k.
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4 Examples

In this section we present some specification examples. To make the presentation more
readable let us introduce some notational conventions. First, we avoid writing trailing
0 processes, second, we write g[P]er instead of &1[P]er and similarly for node (t),
cony(t) and accy(t).

Boolean expressions Booleans are encoded as processes that allocate a pair of names
to a node:

True r def (vDel(t, t)]er

False r 0 £, elf, f)]er.

The truth and the falsity are tested by checking that the names in a pair are equal or
different, respectively. The following process tests for the equality of two names:

Testxyr & (vH(node(t).e[Evalyr | (x)]er),

where Eval y r & ().Truer | (—y).False r. Process Test spawns the tuple (x) and the
Eval process onto a newly generated node so that the first or the second component of
Eval have exclusive access to (x). Notice that only one of the components can consume
the tuple, indeed, either x = y (and only the pattern (y) matches (x)) or x # y (and
only the pattern (—y) matches (x)). Finally, True or False allocates on node r the truth
value corresponding to evaluation of x = y. Assuming the encoding of booleans, we can
represent standard control structures such as if-then-else and while.

The encoding of boolean values is indeed an example of a standard programming
metaphor for finding and handling services. Assume that we want to describe a look-up
mechanism for discovering distributed services. For instance, the web services technol-
ogy allows deploying new services by gluing together those that have been published.
Web service composition, however, requires a look-up phase where the available service
must be discovered. In the boolean example, processes True and False are the services
that have been published and composed together to provide the Test service. Notice that
the look-up phase does not require the knowledge of the service name but only that of
the “schema” of the service. For instance, whenever a new “true” service is published it
suffice to generate a new name and use it for building the “schema” for the true service
(i.e., a pair of two equal names).

Public, private, permanent and stable links. Links in oS are public entities: when
available they can be exploited by all processes. Consider the following KoS net:

N Y sogPler | s~r || ricom®.el0ler || t:: acer(r),

where QoS values are the c-semiring of natural numbers. Net N has three nodes s, r
and ¢ and, initially, only s and » are connected by a link with QoS value 1. Node s is
trying to spawn P on ¢ which is not possible because there is no path from s to 7. Node
r is willing to spawn a process Q on ¢, as well; however, r is aware that a link must be
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first created. Node ¢ simply accepts requests for establishing a link from r. Initially, it is
only possible to synchronize con,(t) and acc,{r) which, by applying rule (con) leads to

N Y soaPlet | s~r || roelQler | rA ¢ || t:0.

Now, applying rules (PREF), (LINK) and (LAND) we derive
N'%)s:: &g[Plet || s A7 | r=0 || £::Q.

Notice that the link between r and ¢ is consumed by the migration of Q hence P cannot
reach . However, N’ can also evolve differently, in fact, both the two spawning actions
are enabled, because the creation of the link between r and ¢ has also provided a path
from s to ¢ exposing the QoS value 3. Hence, by rules (PREF), (LINK), (ROUTE) and (LAND)
we can also derive

N’ —;> 520 || r:elOlet || t:: P

Noteworthy, the migration of P prevents Q to be spawned because the link created by r
has been used by P.

In general, this kind of interference should be avoided and this can be done in KoS
by expressing private links which can be specified by exploiting the properties of c-
semirings. The intuition is that the use of a link is allowed only whether the traversing
process has the appropriate “rights”. If we represent access rights as sets of names,
then a process must “know” all the names needed for traversing the link. For instance,
consider the following net:

s gpglPlet | s n s,

process P can traverse the link s ¢ because it “knows” r, that is the only name

required to traverse the link. Noteworthy, P could not traverse s e s’ because it does
not expose name u.

We consider the c-semiring R = (9;,(S) U {S},glb,U, S, ) to represent access
rights (recall that S is the set of sites). It is straightforward to prove that R is a c-
semiring; moreover, the order induced by the additive operation of R is the inverse of
the set inclusion (i.e., X <Y < Y C X).

Therefore, a private link between the nodes s and ¢ can be specified as

opsPlls 2t 0,

indeed, in order to pass through link s 4 t, a process must exhibit the “password” p.
The knowledge of p is handled by enlarging the scope of the restriction and communi-
cating it.

We conclude by illustrating how one could implement permanent links, i.e. links
that are always available, by exploiting replication:

s leon () || ¢z lacey(s)

A slight variation are stable links, which are links existing until a given condition is
satisfied.

Stable, G t < lcon(t) | e[While G do acc(s) od 0]et
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Cryptography. By exploiting private links, KoS can encode standard encryption/
decryption mechanisms usually adopted for expressing security protocols in process
calculi (see e.g. [1]). Consider the following net:

. . (k) k)
ks Plli~spllsg Ml sg ~rllr:Q), (1

and assume that the only links from/to s; are those appearing in (1). Net (1) aims at
representing the initiator i and the responder r of a protocol that share a key k. According
to (1) a key is modelled by means of a pair made of a name and a node which roughly
speaking contains those messages that are encrypted with k.

The intuition is that encrypting corresponds to allocating a message on s; while

decrypting corresponds to the possibility of “jumping” on s; and reading a message or,

. L .k k
in other words, to the knowledge of & for traversing links i B Sk OF S W

S  Composing Overlay Networks

We consider a scenario where a service is replicated over the nodes of an overlay net-
work and can be invoked trough a unique handler H that manages the requests of the
clients. This kind of architectures is adopted from Internet Service Providers (ISP) that
offer dial-up connection to end-users (EU). In this case a telecommunication company
(TC) handles the phone overlay networks. The EU connects to the “nearest”” ISP server
by dialing a single (country-wide) number. The TC takes care of dispatching the call
to the closest ISP server on the overlay network. There are (at least) two possible way
of connecting the EU and the ISP server. Either the TC establishes a direct connection
between the EU and the ISP, or the TC act as a gateway between the phone overline net-
work and the ISP overlay network. Both solutions can be easily expressed in KoS in the
logical architecture of the system: the handler H manages the requests (e.g., controls the
access rights of the client), looks for a suitable server, and forwards the request, while
trying to balance the load of any replica of the server. Hence, the request of a client C
might not be forwarded to the “best” server from the client’s point of view. In this case,
H provides another server to C, however, the client may or may not commit to use it.

The simplest way to model this composed overlay network is to assume that the link
between C and H have QoS values expressing the access rights of C. When a server s
meeting both the request of C and the load constraints is found, H replies to C and tells
s to accept a (private) link from C. Hereafter, we assume that / is the node address of
H. We detail the client first:

C«k prc déf (V }’)( 8K[<“connect”, c, r)]@h.
(r,?s, 7pr’, ?p).
If.pr' < pr
then cony,.py(s).€pn[R]@s
else cony, p(8).£(p, (7, “to-much”)] @5).

Process C requests H to find a server and waits for the response. The request contains
¢, the node address of C, and a private name r. Name r can be thought of as the unique
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marker of the request so that only C will acquire data corresponding to request r. Pos-
sibly, H returns a response (marked with r) containing the server address s, the price
pr’, and the password p for the private link. Finally, C establishes a private link with s
and, depending on the price pr’ required by the server, either raises its request R ("then’
branch) or notifies s that the service is too expensive ("else’ branch).

The definition of H requires the following auxiliary processes.

RA(T) € (T).(tr)

Ltgri &f Rd(r,?)).If ;, j < ithen True else False

Process Rd(T) looks for a tuple matching 7' and immediately re-generates the consumed
tuple; this is denoted by t; which is obtained from T by removing all the *?* occurring
in its placeholders. Then, process Lt, r i, interpreting (r, v) as a “cell” having address r
and containing value v, reads the value in r and establishes if it is less than/equal to i.

H 1 (comeer, 2x, 29).(r, 1)

While,, Lty, r nserv
do
(r, 70).Rd (pref (x,i), 2, 7pr.)
If;, | > max
then (r,i + 1)
else
(v p)(e[{“newlink”, X, 1, pY]@pref (x, i).
el[(r, pref (x,0), pr, p)lex.
(x, W).acc o p{xyLx, f(v, D).
(pref(x,10), 2, ?2pr).(pref (x,i),l + 1, pr))

ode [( r, “no—server—available”)] @x) .

Process H is continuously listening for a connection request. Once such a request is is-
sued from a client at x, H starts scanning the server list (nserv is the number of servers).
For each server s, node & contains a tuple (s, [, pr) where [ is an estimation of the load
of s and pr is the price for using s. Also, for each client x, & maintains a tuple (x, «)
that reports the connection between H and x (as done in Section 2). Moreover, H uses
a function pref that, given the client address x and the index i, yields the i-th server
“preferred” by the client. At the i-th iteration of the while loop, H reads the information
of the i-th server preferred by x and, if the load of such a server is too high, the cycle
is repeated provided that more servers are left ("then’ branch); otherwise, a password
p for a private link is generated and communicated to both x and the selected server.
The server will accept a private link creation from x so that the client owning the pass-
word p can perform a request at s. Finally, H re-establish a link with x according to
the new load of the servers by exploiting function f and reflecting this changes in the
tuple corresponding to x (i.e., {x, f(v,0))), as in Section 2. Indeed, the mechanism of
load balancing is the one defined in Section 2, the only difference being that now H is
the unique handler that manages the connections with the clients.
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Given H and C, the servers must simply wait for a connection request (issued from
H) and establish the private connection with the client:

def
S's = 1 (newlink”, 2X, 77, 2P).acc . p{x)...wait & execute....

el(s, 2, pr).(s,l - 1, pr))]eh)).

Once the request has been served, S simply updates the load of s.
A net where C, H and S work can be defined as follows.

lizt, o 2 lecon{xiy || Bz H ||
sty s jorn i feon(sy)y | (sl pryy sz S)

.....

where || ;-

.....

The other solution touched upon at the beginning of this section can be achieved by
exploiting the possibility offered by KoS of “connecting” links to form paths between
nodes. More precisely, instead of connecting directly the client’s node x and (the node
of) the selected server s, we can connect z and s so that the client’s request at s is routed
through A.

6 Conclusion

We have formally defined KoS a process calculus that provides basic primitives to de-
scribe QoS requirements of distributed applications. We demonstrated the applicability
of the approach by specifying some expressive case studies.

Our research program is to provide a solid foundation to drive the design of lan-
guages and middleware having application-oriented QoS mechanisms. The work re-
ported here is a preliminary step in this direction. In terms of calculus design, the current
definition of K0S assumes that links are the basic construct to manage QoS interactions
and cooperation. This is a reasonable assumption for several cases. For instance, in this
paper we handled the QoS composition between different overlay networks by suitable
links. However, one could interpret QoS composition of overlay networks in a more
general sense than adding suitable links. An interesting challenge for future research is
to extend KoS with more general mechanisms for composing overlay networks than
simple parallel composition via links.

There are a number of ways in which our setting can be extended. For instance,
it would be interesting to develop type systems which would allow determining QoS
properties of processes. We plan to extend types for access control of [7, 6] to deal with
QoS attributes. In particular, it would be interesting to exploit such types to capture
the notion of contract. Another direction for future research is developing observational
semantics for KoS based on the idea of observing QoS values. These abstract theories
could permit reasoning on KoS nets and comparing them on the basis of the perceived
QoS values.
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Abstract. The paper investigates a formal approach to the verification
of non functional software requirements, e.g. portability, time and space
efficiency, dependability/robustness. The key-idea is the notion of ob-
servable, i.e., an abstraction of the concrete semantics when focusing on
a behavioral property of interest. By applying an abstract interpretation-
based static analysis of the source program, and by a suitable choice of
abstract domains, it is possible to design formal and effective tools for
non-functional requirements validation.

1 Introduction

Abstract interpretation [10] is a theory of semantics approximation for com-
puting conservative over-approximations of dynamic properties of programs. It
has been successfully applied to infer run-time properties useful for debugging
(e.g., type inference [7,28]), code optimization (e.g., compile-time garbage col-
lection [22]), program transformation (e.g., partial evaluation [25], paralleliza-
tion [36]), and program correctness proofs (e.g., safety [20], termination [5], cryp-
tographic protocol analysis [33], proof of absence of run-time errors [3], semantic
tattooing/watermarking [13]).

As pointed out in [30], there is still a large variety of tasks in the software
engineering process that could greatly benefit from techniques akin to static
program analysis, because of their firm theoretical foundations and mechanical
nature.

In particular, as observed by [26], during the development of large-scale soft-
ware systems, effective and efficient management of customer and user require-
ments is one of the most crucial, but unfortunately also least understood issues.
Problems in the requirements are typically not recognized until late in the devel-
opment process, where negative impacts are substantial and cost for correction
has grown large. Even worse, problems in the requirements may go undetected
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through the development process, resulting in software systems not meeting
customers and users expectations, especially when the coordination with other
components is an issue. Therefore, methods and frameworks helping software
developers to better manage software requirements are of great interest for com-
ponent based software.

In this paper, we are interested to investigate the impact of Abstract Interpre-
tation theory in the formalization and automatic verification of Non-Functional
Software Requirements, as they seem not adequately covered by most require-
ments engineering methods ([27], pag. 194). Non functional requirements can be
defined as restrictions or constraints on the behavior of a system service [35]. Dif-
ferent classifications have been proposed in the literature [4, 16, 15], though their
specification may give rise to troubles both in their elicitation and management,
and in the validation process.

In fact, this work originated from a quite naive question: “what do we mean
when we say that a program is portable on a different architecture?”. In [17] a
software is said portable if it can run in different environments. It is clear that it
is assumed not only that it runs, but that it runs the same way. And it is also clear
that if we require that the behavior is exactly the same, portability to different
systems (e.g., from a PC to a PDA; or from an OS to another) can almost never
be reached. This means that implicit assumptions are obviously made about the
properties to be preserved, and about the ones that might be simply disregarded.
In other words, portability needs to be parameterized on some specific properties
of interest, i.e. it assumes a suitable abstraction of the software behavior. The
same holds also for other product non-functional requirements, like space and
time efficiency, dependability, robustness, usability, etc. It is clear that, in this
context, the main features of abstract interpretation theory, namely modularity,
modulability, and effectiveness may then become very valuable.

The main contributions of the paper can be summarized as follows:

— We extend the usual abstract interpretation notions to the deal with systems,
i.e. programs + architectures.

— We show that a significant set of product qualities (non functional require-
ments) can be formally expressed in terms of abstraction of the concrete
semantics when focusing on a behavioral property of interest. This yields an
unifying view of product non-functional requirements.

— We show how existing tools for automatic verification can be re-used in
this setting to support requirements validation; their practicality directly
depends on the complexity of the abstract domains.

The advantage of this approach with respect to previous attempts of mod-
elling software requirements, e.g. by using Milner’s Calculus of Communicating
Systems [19] or formal methods like Z [24] or B [1, 2] is twofold: (i) the soundness
of the approach is guaranteed by the general abstract interpretation theory, and
(ii) the automatic validation process can be easily tuned according to the desired
granularity of the abstraction.

As far as we know, this is the first attempt to apply Abstract Interpretation
theory to the treatment of non-functional software requirements. These semi-
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nal results can be seen as a partial contribution towards the achievement of a
more challenging objective: to integrate formal analysis by abstract interpreta-
tion in the full software development process, from the initial specifications to
the ultimate program development [9].

Paper Structure. In Section 2, the concrete semantics of a simple imperative
language is introduced to instantiate our framework. In Section 3, the core ab-
stract interpretation theory is extended to deal with program and architecture
abstractions. In Section 4 we show how to instantiate our framework on a suite
of non-functional product requirements. Section 5 concludes the paper.

2 Operational Semantics of a Core Imperative Language
with Exceptions

In order to illustrate the results of this paper, we instantiate our framework
with a core imperative language with exceptions and a core architecture. The
results can be easily generalized to more complex languages and architectures.
We give the syntax, the transition relations and the trace semantics of systems,
composed by architectures and a programs.

2.1 Syntax

In this paper setting an architecture is a tuple (bits, Op, stdio, stdout), where
bits is the number of bits used to store integer numbers, Op is a set of functions
implementing basic arithmetic operations, stdio is the input stream (e.g., the
keyboard) and stdout is the output stream (e.g., the screen). The input stream
has a method next that returns immediately the next value in the stream, and
the output stream has a method add to put a pair (v,c), i.e., a value v with a
color c. We assume that if an arithmetic error occurs in the application of an
operation op € Op (e.g., an overflow or a division by zero), then the exception
ExcMath is raised.
The syntax of programs is specified by the following grammar:

C:=skip|x=E|Cy;Cy | if(E!=10)C; else C; | while (E!=10)C
write(x,col) | throw Exc | try C; catch(Exc) C
E:= k|read\E1+E2 ‘ El_E2 ‘ El*EQ |E1/E2
where x and col belong to a given set Var of variables, Exc belongs to a given set
Exceptions of exceptions (including the arithmetic ones) and k is (the syntactic

representation of) an integer number.
A system is a pair (4,C), where A is an architecture and C is a program.

2.2 Semantics

The semantics of a system is described in operational style. We assume that
the only available type is that of architecture-representable natural numbers:
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EENis EZNyits A.stdio.next=v
(ko)—k  (ko)—(ExcMath,0) (read,o)—(v,0)

<E1,0’>i><’l)1,(7> <E2,0>i><v2,a) v1,02#ExcMath A.op(vi,v2)=v#ExcMath

<E1 OpE270> i) <U7U>

<E170>i<vl70> <E27a>i>(v2,a> v1,027#ExcMath A.op(vi,v2)=ExcMath
(E; 0pEy,0)—> (ExcMath,o)

<E1,0>i>(v1,cr> <E2,0’>i><112,0'> (v1=ExcMath) or (vo=ExcMath)
(E1op E27U>1><EXCMath7U>

Fig. 1. The transition relation for expressions

Npits = {0,,... Qbits _ 1}. Given the syntactic representation k of a number, k
is the semantic correspondent. For instance, OxFFFF = 65535 so that OxFFFF ¢
Ng. An environment is a partial map from variables to representable integers:
Env = [Var — Ny;,]. If a variable x is not defined in a state o, we denote that
by o(x) = {2. A state is either a command to execute in a given environment,
or an environment, or an exception raised within an environment. Formally:
2} = C x EnvU Env U Exceptions X Env.

The transition relations for expressions and programs are defined by struc-
tural induction, and they are depicted in Fig. 1 and Fig. 2. It is worth noting
that the transition rules are parameterized by the underlying architecture (e.g.,
the raising of an overflow exception depends on Np;s).

Let X* denote the set of finite traces on X, and let Sy C X be a set of initial
states. With a slight abuse of notation, we refer to a state as a trace of unitary
length. The partial-traces semantics [12] of a system is then expressed as a least
fixpoint over the complete boolean lattice (P(X*), C) as follows:

s[(4,C)](So) = lfp(%)\X. SoU{og...0n0nt1l00...0n €X, 0y — Opi1}.

3 Abstracting Systems = Programs 4+ Architectures

Abstract interpretation [10] is a general theory of approximation which formal-
izes the idea that the semantics of a program can be more or less precise de-
pending on the considered observation level. In this section we revise some basic
concepts, and we extend them to deal with composed systems.

In the abstract interpretation terminology, (P(X*), C) is the concrete domain,
its elements are semantic properties, and the order C stands for the logical
implication. As a consequence, the most precise property about the behavior
of a system is the semantics s[(4,C)], called the concrete semantics [10]. Set
of traces are approximated are represented by suitable abstract elements, which
capture interesting properties while disregarding other execution properties that
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E E
(E,0)—(v,0) v#ExcMath (E,0)— (ExcMath,o)
(skip,0)—0 (x=E,0)—0|z—] (x=E,0)— (ExcMath,o)
<C170->_>o—l <C17U>_><EXC70—>

<C1;C2,0’>_><C2,0'l> <C1;CQ,U>—><EXC,0'>

<E70>1><E,0> k#0 <E,a>5<0,a>
(if(E'=0)C; else Cp,0)—(C1,0)  (if(EI=0)C; else Cy,0)—(Cay0)

<E,U>1><EXCMath,O'>
(if(E!=0)C; else C»,0)— (ExcMath,o)

(E.0) = (ko) kA0 (E.0) = (0.0)
(while(E!=0) C,0)—(C;while(E!=0) C,0) (while(E!=0) C,0)—0

(E,J>1><ExcMath,J>
(while(E!=0) C,0)—(ExcMath,o)

A.stdout.add(o(x),0(col)) ExcE€Exceptions
(write(x,col),0)—0c (throw Exc,0)— (Exc,0)
<C1’o'>—>o'/ <C170—>_><EXC7U/>

(try Ci catch(Exc) Co,0)—0’ (try Ci catch(Exc) Co,0)—(Ca,07)

(Cy,0)—>(Exc’,0’) Exc’#Exc
(try Ci catch(Exc) Cs,0)— (Exc’,0”)

Fig. 2. The transition relations for programs

are out of the scope of interest. Abstract properties (or elements) belong to an
abstract domain of observables, D, and they are ordered according to C, the
abstract counterpart for logical implication. In this work we assume that (D, C)
is a complete lattice.

The correspondence between the concrete and the abstract semantic domains
is given by a pair of monotonic functions {«,~). The function a € [P(X*) — D],
called the abstraction function, formalizes the notion of the abstraction, and
a(T) represents the best approximation in D of the set of traces T (wrt the
order in D). If o(T)Cp then p is also a correct, although less precise, abstract
approximation of 7. On the other hand, the function v € [D — P(X*)], called
the concretization function, returns the set of traces that are captured by an
abstract property p. The abstraction and concretization functions must satisfy

the following property:

VT € P(¥*).vd € D. o(T)

I

d <= T C~(d),

in such a case, we say that (a, ) form a Galois connection between the concrete
and the abstract domains. We write is as
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I

(P(Z*),C) == (D, L. (1)

The abstract semantics of a system, §[(A,C)], is defined over an abstract
domain that is linked to the concrete domain by a Galois connection. It must
satisfy the soundness criterion, [10]:

VSo € X. a(s[(A, 0)](So)) E s[(4, C))(c(S0))-

The soundness criterion above imposes that, when the properties encoded by
a given abstract domain are considered, the abstract semantics S[(A, C)] cap-
tures all the behaviors of (A,C). As a consequence, given a specification of a
system (A, C) expressed as an abstract property p, if [(A, C)](a(Sy))Ep, by the
soundness criterion and by the transitivity of C, we have that

a(s[(a,€)](S0))Cp-

This means that (A, C) respects the specification p.

In the following, we instantiate the abstract domain and p in order to re-
flect non-functional requirements of systems and we show how well-known static
analyses can be re-used in this enhanced context for the automatic verification
of such properties.

4  Application: Non-functional Requirement Analysis

Non-functional software requirements are requirements which are not directly
concerned with the specific functions delivered by the system [35]. They may
relate to emergent system properties such as reliability, response time and store
occupancy. Alternatively, they may define constraints on the system like the data
representation used in system interfaces.

The ‘TEEE-Std 830 - 1993’ [23] presents a comprehensive list of non-functional
requirements. In the following we will focus on a few of such requirements, namely
portability, efficiency, robustness and usability. The approach can be extended
to cope with other non-functional requirements.

In this section, we show (i) how such requirements admit a rigorous formal-
ization, unlike, e.g., what stated in [27-§8.2], (ii) how, by a suitable choice of
abstract domains, existing tools can be re-used to verify such requirements, and
(iil) the effectiveness of the approach on a public-domain static analyzer [8].

4.1  Portability

Informal Definition. According to [17], a software “is portable if it can run on
different environments”. The term environment may refer to a hardware plat-
form or a software environment. Analogously, another widespread textbook, [31],
defines portability as “the ease of transferring software products to various hard-
ware and software environments”. The first observation is that the two definitions
implicitly link the requirement to unspecified software metrics. Furthermore, as
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any natural-based language specifications, they are intrinsically ambiguous. For
instance, the word “run” can be read as just the possibility of recompiling and
executing the software on different system, but also as the request that some
behavioral properties of the software are preserved in different platforms.

Formal Definition. We specify portability as a property of the execution of a
program that is preserved when it is ported on different architectures. This
means that up to a certain property of interest, the behavior of a software is the
same on a different architecture.

Definition 1 (Portability). Let us consider a program C, an architecture A

and a Galois connection (P(X*), C) % (D,C). We say that C, developed on
A, is portable on the architecture B w.r.t. the observable domain D, if

VSo € X. a(s[(B,0)](S)) E a(s[(,C)](So)).

Abstraction. A class property one is interested to keep unchanged among dif-
ferent porting of the software is the behavior w.r.t. arithmetic overflow. For
instance, the violation of such a property in porting the control software on a
different architecture was at the origin of the Arianne V crash [29].

Arithmetic overflow can be checked by using numerical abstract domains,
e.g., [10, 14, 32]. In such domains the range of the values assumed by a variable
can be constrained so that it can be checked against the largest representable
number in a given architecture.

Ezample 1 (Portability). Let us consider the program C in Fig. 3(a), and let
us consider an architecture A such that A.bits = 32. We can use the Inter-
vals abstract domain [10], and the public-domain static analyzer [8] to infer
that 8[(4,C)](i — [—o0,+00]) = [1,2%°], and as 2!6 is representable on a 32
bit architecture, then program C does not cause any arithmetic overflow. As a
consequence, by the soundness of the static analysis (guaranteed by abstract
interpretation theory), we can safely infer that the program is portable to any
architecture in which 2!° is representable (this is not the case in a 16 bits archi-
tecture).

4.2  Efficiency

Informal Definition. In the existing literature, efficiency “refers to how econom-
ically the software utilizes the resources of the computer” [17], or it is “the ability
of a software system to place as few demands as possible on hardware resources,
such as processor time or space occupied” [31]. Once again, such definitions suffer
from the ambiguity of the natural language,e.g., it is not clear if when verifying
efficiency requirements the underlying architecture must be considered or not,
or if space and time requirements must be considered independently or not.
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C2i=1; c’ 24 =1,
while (2'%-i 1= 0) while (2'%-i 1= 0)
i = i*4 i=i+2
(a) C, a program not (b) €', a non-efficient
portable on 16 bits ar- program
chitectures
D £ try
i=7; Eéx=7,r=7,g=7,b=7
if(i '=0) c=1i /0 if(r+g—1!=0)
else throw Err col = 27 428 4 2°
catch(Err) else col = 0;
c = 0; write(x,col)

write(c,255)

(d) E, a program usable by dal-
(c) D, a robust program tonians

Fig. 3. Four programs on which we verify non-functional prequirements

Formal Definition. Efficiency can be formally defined as an abstraction of the
execution traces of a program. As such behavior depends on the underlying archi-
tecture, our definition explicitly mentions the architecture in which the program
is executed. Efficiency requirements can be specified by natural numbers, stand-
ing, for instance, for the number of processor cycles or the size of the heap. As a
consequence our abstract domain will be set of natural numbers with the usual
total order, (N, <).

We distinguish between efficiency in time and space. The first one corresponds
to the length of a trace, i.e. the number of transitions for executing the system,
and the second one to the size of the environment, i.e. the maximum quantity of
memory allocated during program execution. It is worth noting that the following
definitions are well-formed as we consider partial execution traces, i.e., (possible
infinite) sets of finite traces. Recall that {2 denotes an uninitialized variable.

Definition 2 (Time Efficiency). Let C be a program, A an architecture, length
€ [P(X*) — N] be the length of a trace, and (P(X*), C) <Z——1> (N, <) a Galois
connection where

ay = AT. sup({length(r) | 7 € T'})
v = An. {7 € P(X") | length(r) < n}.

We say that the system (A, C) respects the time requirement k if

VS0 € 5. au(s[(A, C)](So)) < k.
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Definition 3 (Space Efficiency). Let C be a program, A an architecture, size €
[P(X) — N] be the function defined as

size = Ao. #{x € Vars | o(x) # 2},

and (P(X*), C) e (N, <) a Galois connection where

as = AT. max{size(c) | o € 7}
TET
vs = An. {7 € P(X*) | Vo € 7. size(o) < n}
We say that the system (A, C) respects the space requirement k if

VSs C 2. as(s[(2,C)](So)) < k.

Abstractions. In order to automatically verify time requirements, we must find
an upper bound to the number of transitions performed during the execution
of a system. Once again, we can do it by using a numerical abstract domain.
In fact, we can endow a concrete state o with a (hidden) variable time, to be
incremented at each transition [18]. Then, the values taken by time will be upper-
approximated in the numerical domain, say by time, so that the verification boils
to check that time < k. In the same way, the verification of space requirements
can be obtained by abstracting a state with the number of variables different from
{2 it contains. The approach can be generalized to more complex languages, e.g.,
a language with recursive functions. In this case, the stack will be approximated
by its height.

In our approach, verification of time and space efficiency requirements can
be easily combined by considering the reduced product of the two abstract do-
mains [10].

Ezample 2 (Efficiency). Let us consider the programs C and C’' in Fig. 3, an
architecture A, where the multiplication is a primitive operation, and an archi-
tecture A’ where the multiplication is implemented as a sequence of additions,
e.g.,i=1%4becomesi=1i+1i;i =1+ i.Using the analyzer described in [§],
we can infer:
S[(A, C)]((i = [~00, +0c], time — 0)) = (i  [1,2'%], time + [0, 9])
s[(2,C)]({(i — [—o0, +00], time > 0)) = (i + [1,2'0], time + [0, 25]),
(A, ((i — [—00,+00], time > 0)) = (i > [0, 2], time - [0, 32769]).

Observe that the results above can be used for comparing different programs on
different architectures.

4.3 Robustness

Informal Definition. Robustness, or dependability, for [17] is “the ability of a
program to behave reasonably, even in circumstances that were not anticipated
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in the specifications” , for [31] is “the ability of software systems to react appropri-
ately to abnormal conditions”, and for [27] is “the time to restart after failure”.
Once again, the three definitions are not rigorous enough: the first definition
does not specify what is a reasonable behavior, the second one does not specify
what is an abnormal condition, and the latter has implicit the strong assumption
that all possible failures are considered.

Formal Definition. A software is robust, if any exception raised during its execu-
tion, in any architecture and with any initial state, is caught by some exception
handler. We recall that exceptions can be raised either by the architecture, e.g.,
division-by-zero, or by the software itself. As a consequence, a robust program
never terminates in an exceptional state.

Definition 4 (Robustness). Let C be a program, and let (P(X*),C) —=
(P(X),C) be a Galois connection where

ag=NT.{o, |0g...0n €T}
Yo =AS. {og...0n_10, | Vi€ [0,n—1].0c € ¥ Ao, € S}.

We say that a system is robust if for all the architectures A,

VSo € P(X). aq(s[(4,C)](So)) NExceptions x Env = .

Abstraction. Robustness can be checked either by considering an abstract do-
main for inferring the uncaught exceptions [34], or by considering an abstract
domain for reachability analysis [8]. In the first case, a program is robust if the
analysis reports that no exception can be raised; in the latter, a program is ro-
bust if the analysis reports that the lines of code that may raise an exception
(e.g., with a throw statement) are never reached.

Ezample 3 (Robustness). Let us consider the program D of Fig. 3(¢). An interval
analysis determines that when the true-branch of the if statement is taken, i is
different from zero, so that the MathErr exception cannot be raised. In the other
case, the exception Err is raised and then it is also caught. As a consequence, D
is robust w.r.t. the chosen abstraction.

4.4  Usability

Informal Definition. The definition of usability is probably the most contrived
one. The definition in [17] says that “software system is usable [...] if its hu-
man users find it easy to use”, whereas [31] talks about ease of use as “the
ease with which people of various backgrounds [...] can learn to use software”
and [27] defines it in function of other, undefined, basic concepts as “learnability,
satisfaction, memorability” .
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Formal Definition. In our setting, usability is a abstraction of the output stream
that is preserved when a given property, depending on the particular user, is
considered. For instance, an abstraction that considers the colors of the output
characters can be used to verify if a system is usable for daltonians. We need
some auxiliary definitions. Output streams belong to the set Stdout. Given a
state o € X, the function out € [ — Stdout] is such that out(c) is the output
stream in the state o.

Definition 5 (Usability). Let C be a program, A an architecture, let (P(X*),

c) <Z_—i) (P(Stdout), C) be a Galois connection where

ay =M. {out(c) e ¥ |IFIreT.oc €T}
v5=X0.{T € X" |Vo €1.3o€ 0. out(o) = o},

let (P(Stdout), C) %} (D,C) be a Galois connection, and let p € D. We say
that the system (A, C) is usable w.r.t. the observable p if

VSo. a(as(s[(4,C)])(S0)) E p-

Abstract Domains. The definition above can be instantiated to consider the us-
ability of a system for daltonians, i.e., people afflicted by red/green color blind-
ness. In fact, the colors of the output stream can be abstracted in order to col-
lapse together colors indistinguishable by daltonians. As colors are represented
by integers in the RGB color system, numerical abstract domains can be used
to automatically check properties on colors.

Ezample 4 (Usability). Let us consider the program E in Fig. 3(d), an architec-
ture where the input stream is a sequence of 0/1 digits, and colors are represented
as in RGB schema using 3 bits, i.e. colors range between 0 (black) and 7 (white).
Using the static analyzer of [8] instantiated with the Intervals abstract domain,
and refined with trace partitioning [21], one infers that

s[(A,E)]((x — [0,1],r,g,b— [0,1]))
=({{x—1[0,1],r,g,b+ [0,1],col — [0,1] U[6,7])),

so that as col is always in the set of the colors distinguishable by daltonians
(i.e. { black, blue, yellow, white}), E respects the usability specification.

4.5 Other Non-functional Requirements

We showed how four typical non-functional requirements can be encapsulated
in our framework. This approach based on preservation of a property up to
a given observation, can be e